(《机器学习》完整版系列)第7章 贝叶斯分类器——7.10 EM算法的使用场景及步骤(反复循环执行E步和M步)

EM的使用场景为: 已知“结构”(如,贝叶斯网)和“可观察数据”的一个数据集,隐变量的数据未知,求参数。
EM算法的步骤:反复循环执行E步和M步

EM算法的步骤

7.9 EM原理的详细数学推导知,取序列(7.66)中的 Θ   t {\Theta}^{\,t} Θt(足够大的 t t t)作为 Θ ∗ {\Theta}^{*} Θ的近似解。

设从某个初始值 Θ 0 {\Theta}^0 Θ0开始,生成序列(7.66)(为叙述方便,再写一遍:生成如下序列(7.73))
Θ 0 , Θ 1 , Θ 2 , ⋯   , Θ   t , Θ   t + 1 , ⋯ \begin{align} {\Theta}^0,{\Theta}^1,{\Theta}^2,\cdots,{\Theta}^{\,t},{\Theta}^{\,t+1},\cdots \tag{7.73} \end{align} Θ0,Θ1,Θ2,,Θt,Θt+1,(7.73)
的方法是反复循环执行如下两步骤(E步和M步):

  • E步(指 E \mathbb{E} E):

    (1)推断隐变量分布: P ( Z   ∣   X , Θ   t ) P(\mathbf{Z}\,|\,\mathbf{X},{\Theta}^{\,t}) P(ZX,Θt)

    (2)求 L L \mathrm{LL} LL的期望,即 Q Q Q的表达式(其中 E \mathbb{E} E用到(1)的结果):
    Q ( Θ   ∣   Θ   t ) = d e f E Z   ∣   X , Θ   t   L L ( Θ   ∣   X , Z ) \begin{align} Q(\Theta\,|\,{\Theta}^{\,t}) \mathop{=} \limits^{\mathrm{def}} \mathop{\mathbb{E} }\limits_{\mathbf{Z}\,|\,\mathbf{X},{\Theta}^{\,t}}\, \mathrm{LL}(\Theta\,|\,\mathbf{X},\mathbf{Z}) \tag{7.74} \end{align} Q(ΘΘt)=defZX,ΘtELL(ΘX,Z)(7.74)

  • M步(指 max ⁡ \max max):
    Θ   t + 1 = arg ⁡ max ⁡ Θ Q ( Θ   ∣   Θ   t ) \begin{align} {\Theta}^{\,t+1}=\mathop{\arg\max}\limits_{\Theta}Q(\Theta\,|\,{\Theta}^{\,t}) \tag{7.75} \end{align} Θt+1=ΘargmaxQ(ΘΘt)(7.75)

生成序列(7.73)后,取足够大的 t t t Θ   t {\Theta}^{\,t} Θt即为最优参数 Θ ∗ {\Theta}^* Θ的估值。

EM算法过程也体现了对两个 Z , Θ \mathbf{Z},\Theta Z,Θ变量采用“交替固定”的处理思路。

上述是基于MLE的EM算法,当基于MAP时,只需将M步改为下式即可:
Θ   t + 1 = arg ⁡ max ⁡ Θ   Q ( Θ   ∣   Θ   t ) + ln ⁡ P ( Θ ) \begin{align} {\Theta}^{\,t+1}=\mathop{\arg\max}\limits_{\Theta}\ Q(\Theta\,|\,{\Theta}^{\,t})+\ln P(\Theta) \tag{7.76} \end{align} Θt+1=Θargmax Q(ΘΘt)+lnP(Θ)(7.76)

特别地,当数据集 D D D中没有缺失属性(隐变量)时,有两种办法处理:

(1)作为0个隐变量时,式(7.74)变为
Q ( Θ   ∣   Θ   t ) = L L ( Θ   ∣   X ) = L L ( Θ   ∣   D ) \begin{align} Q(\Theta\,|\,{\Theta}^{\,t}) & =\mathrm{LL}(\Theta\,|\,\mathbf{X})\notag \\ & =\mathrm{LL}(\Theta\,|\,D) \tag{7.77} \end{align} Q(ΘΘt)=LL(ΘX)=LL(ΘD)(7.77)
即为数据集 D D D的对数似然。 这时M步即为极大似然估计,当过程能推导出递推式时,也可以用EM步骤(例如,【西瓜书式(9.32)】推导出参数【西瓜书式(9.34)(9.35)(9.349)】,替换掉中间变量 γ j i {\gamma}_{ji} γji即可得递推式)。

(2)将类标识视为隐变量,再使用EM算法;

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:7.9 EM原理的详细数学推导
下一篇:7.11 期望的计算、再谈贝叶斯图络学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值