在联合分布中,把变量集分成两部分,保留一部分,消去另一部分,从概率角度讲,叫“边际化”, 从求解的角度叫变量消去(消元)。
学习与推断之变量消去法:求解过程为逐步“
m
m
m化”的过程。
学习与推断之变量消去法
在联合分布中,把变量集分成两部分 x E , x F \boldsymbol{\mathrm{x}}_E,\boldsymbol{\mathrm{x}}_F xE,xF,保留一部分 x E \boldsymbol{\mathrm{x}}_E xE,消去另一部分 x F \boldsymbol{\mathrm{x}}_F xF,得表达式【西瓜书式(14.13)】(当连续变量时,将“求和”改为“积分”),从概率角度讲,叫“边际化”(二维表中,右边(或下边)补一列(或行),用于“小计”,由于补在表的边上,故叫“边际化”)。 从求解的角度叫变量消去(消元)。
【西瓜书图14.7(a)】贝叶斯网络中求 P ( x 5 ) P(x_5) P(x5)(推断目标),依该例中式子的次序作如下理解:
i. 通过联合分布求 P ( x 5 ) P(x_5) P(x5),即是对其它变量进行消元,即利用【西瓜书式(14.13)】,展开为多重求和。
ii. 联合分布
P
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
P(x_1,x_2,x_3,x_4,x_5)
P(x1,x2,x3,x4,x5),可以用马尔可夫性进行处理,形成条件概率之积
P
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
P
(
x
1
)
P
(
x
2
∣
x
1
)
P
(
x
3
∣
x
1
,
x
2
)
P
(
x
4
∣
x
1
,
x
2
,
x
3
)
P
(
x
5
∣
x
1
,
x
2
,
x
3
,
x
4
)
(由式(14.1))
=
P
(
x
1
)
P
(
x
2
∣
x
1
)
P
(
x
3
∣
x
2
)
P
(
x
4
∣
x
3
)
P
(
x
5
∣
x
3
)
(由式(14.3))
\begin{align} & \quad P(x_1,x_2,x_3,x_4,x_5)\notag \\ & =P(x_1)P(x_2\,|\,x_1)P(x_3\,|\,x_1,x_2)P(x_4\,|\,x_1,x_2,x_3)P(x_5\,|\,x_1,x_2,x_3,x_4)\quad \text{(由式(14.1))}\notag \\ & =P(x_1)P(x_2\,|\,x_1)P(x_3\,|\,x_2)P(x_4\,|\,x_3)P(x_5\,|\,x_3)\quad \text{(由式(14.3))} \tag{14.35} \end{align}
P(x1,x2,x3,x4,x5)=P(x1)P(x2∣x1)P(x3∣x1,x2)P(x4∣x1,x2,x3)P(x5∣x1,x2,x3,x4)(由式(14.1))=P(x1)P(x2∣x1)P(x3∣x2)P(x4∣x3)P(x5∣x3)(由式(14.3))(14.35)
iii. 确定连加中的次序(连和号的执行次序为从右至左):因求 P ( x 5 ) P(x_5) P(x5),含 x 5 x_5 x5的因子为 P ( x 5 ∣ x 3 ) P(x_5\,|\,x_3) P(x5∣x3),即 ∑ x 3 \sum_{x_3} ∑x3应最后求和,而 x 3 {x_3} x3又涉及到 x 2 {x_2} x2和 x 4 {x_4} x4,由此逆向地追索,即得到【西瓜书图14.7(b)】消息传过程,也得到了连加次序(不是唯一的,如, ∑ x 4 \sum_{x_4} ∑x4可放到最先)。
iv. 保持连加号的次序不变,逐个将式中的因子左移,碰到障碍(求和号与它相关)才停下来,如:
∑
x
3
∑
x
4
∑
x
2
∑
x
1
P
(
x
4
∣
x
3
)
\sum_{x_3}\sum_{x_4}\sum_{x_2}\sum_{x_1}P(x_4\,|\,x_3)
∑x3∑x4∑x2∑x1P(x4∣x3),移动因子
P
(
x
4
∣
x
3
)
P(x_4\,|\,x_3)
P(x4∣x3)后成为
∑
x
3
∑
x
4
P
(
x
4
∣
x
3
)
∑
x
2
∑
x
1
\sum_{x_3}\sum_{x_4}P(x_4\,|\,x_3)\sum_{x_2}\sum_{x_1}
∑x3∑x4P(x4∣x3)∑x2∑x1。
v. 各因子要么是式子表达的,要么是表格表达的,表格表达的示例见【西瓜书图7.2右侧】的条件分布表,总之,各因子都应为已知的值,故可求和。
为便于计算机编程,引入中间过程变量 m Q Q ′ ( x Q ′ ) m_{QQ'}(x_{Q'}) mQQ′(xQ′),其中, Q Q Q表示本次求和因子中被该和号消去的变量的下标,而 Q ′ Q' Q′表示不被该和号消去的变量的下标。 如, ∑ x 2 P ( x 3 ∣ x 2 ) m 12 ( x 2 ) \sum_{x_2}P(x_3\,|\,x_2)m_{12}{(x_2)} ∑x2P(x3∣x2)m12(x2),求和因子中涉及的变量为 x 2 , x 3 x_2,x_3 x2,x3,其中 x 2 x_2 x2在和号下,将被消去, x 3 x_3 x3不被消去,故该式的运算结果存入 m 23 ( x 3 ) m_{23}(x_3) m23(x3)。 因此,求解过程为逐步“ m m m化”的过程。 因“ m m m化”的运算限制在局部(仅与部分变量相关),有利于编程。
上述逐步“ m m m化”的过程对因子为势函数也适用,其步骤为:
i. 根据图形及势函数定义构造出【西瓜书式(14.2)】或【西瓜书式(14.3)】的联合分布。
ii. 对联合分布用连和方式进行消元,根据图形找到消息传递次序,从而确定求和次序。
iii. 保持求和次序不变,将各因子(势函数)尽量左移,碰到障碍(求和号与它相关)才停下来。
iv. 从右至左,对每个 ∑ \sum ∑进行“ m m m化”。
【西瓜书式(14.17)(14.18)】即为示例。
本文为原创,您可以:
- 点赞(支持博主)
- 收藏(待以后看)
- 转发(他考研或学习,正需要)
- 评论(或讨论)
- 引用(支持原创)
- 不侵权
上一篇:14.3 条件随机场(链式CRF的条件概率)
下一篇:14.5 学习与推断之信念传播(消息传递的画法及消息计算)