(《机器学习》完整版系列)第14章 概率图模型——14.4 学习与推断之变量消去法(“边际化”,“m化”逐步消元)

在联合分布中,把变量集分成两部分,保留一部分,消去另一部分,从概率角度讲,叫“边际化”, 从求解的角度叫变量消去(消元)。
学习与推断之变量消去法:求解过程为逐步“ m m m化”的过程。

学习与推断之变量消去法

在联合分布中,把变量集分成两部分 x E , x F \boldsymbol{\mathrm{x}}_E,\boldsymbol{\mathrm{x}}_F xE,xF,保留一部分 x E \boldsymbol{\mathrm{x}}_E xE,消去另一部分 x F \boldsymbol{\mathrm{x}}_F xF,得表达式【西瓜书式(14.13)】(当连续变量时,将“求和”改为“积分”),从概率角度讲,叫“边际化”(二维表中,右边(或下边)补一列(或行),用于“小计”,由于补在表的边上,故叫“边际化”)。 从求解的角度叫变量消去(消元)。

【西瓜书图14.7(a)】贝叶斯网络中求 P ( x 5 ) P(x_5) P(x5)(推断目标),依该例中式子的次序作如下理解:

i. 通过联合分布求 P ( x 5 ) P(x_5) P(x5),即是对其它变量进行消元,即利用【西瓜书式(14.13)】,展开为多重求和。

ii. 联合分布 P ( x 1 , x 2 , x 3 , x 4 , x 5 ) P(x_1,x_2,x_3,x_4,x_5) P(x1,x2,x3,x4,x5),可以用马尔可夫性进行处理,形成条件概率之积
P ( x 1 , x 2 , x 3 , x 4 , x 5 ) = P ( x 1 ) P ( x 2   ∣   x 1 ) P ( x 3   ∣   x 1 , x 2 ) P ( x 4   ∣   x 1 , x 2 , x 3 ) P ( x 5   ∣   x 1 , x 2 , x 3 , x 4 ) (由式(14.1)) = P ( x 1 ) P ( x 2   ∣   x 1 ) P ( x 3   ∣   x 2 ) P ( x 4   ∣   x 3 ) P ( x 5   ∣   x 3 ) (由式(14.3)) \begin{align} & \quad P(x_1,x_2,x_3,x_4,x_5)\notag \\ & =P(x_1)P(x_2\,|\,x_1)P(x_3\,|\,x_1,x_2)P(x_4\,|\,x_1,x_2,x_3)P(x_5\,|\,x_1,x_2,x_3,x_4)\quad \text{(由式(14.1))}\notag \\ & =P(x_1)P(x_2\,|\,x_1)P(x_3\,|\,x_2)P(x_4\,|\,x_3)P(x_5\,|\,x_3)\quad \text{(由式(14.3))} \tag{14.35} \end{align} P(x1,x2,x3,x4,x5)=P(x1)P(x2x1)P(x3x1,x2)P(x4x1,x2,x3)P(x5x1,x2,x3,x4)(由式(14.1)=P(x1)P(x2x1)P(x3x2)P(x4x3)P(x5x3)(由式(14.3)(14.35)

iii. 确定连加中的次序(连和号的执行次序为从右至左):因求 P ( x 5 ) P(x_5) P(x5),含 x 5 x_5 x5的因子为 P ( x 5   ∣   x 3 ) P(x_5\,|\,x_3) P(x5x3),即 ∑ x 3 \sum_{x_3} x3应最后求和,而 x 3 {x_3} x3又涉及到 x 2 {x_2} x2 x 4 {x_4} x4,由此逆向地追索,即得到【西瓜书图14.7(b)】消息传过程,也得到了连加次序(不是唯一的,如, ∑ x 4 \sum_{x_4} x4可放到最先)。

iv. 保持连加号的次序不变,逐个将式中的因子左移,碰到障碍(求和号与它相关)才停下来,如:
∑ x 3 ∑ x 4 ∑ x 2 ∑ x 1 P ( x 4   ∣   x 3 ) \sum_{x_3}\sum_{x_4}\sum_{x_2}\sum_{x_1}P(x_4\,|\,x_3) x3x4x2x1P(x4x3),移动因子 P ( x 4   ∣   x 3 ) P(x_4\,|\,x_3) P(x4x3)后成为 ∑ x 3 ∑ x 4 P ( x 4   ∣   x 3 ) ∑ x 2 ∑ x 1 \sum_{x_3}\sum_{x_4}P(x_4\,|\,x_3)\sum_{x_2}\sum_{x_1} x3x4P(x4x3)x2x1

v. 各因子要么是式子表达的,要么是表格表达的,表格表达的示例见【西瓜书图7.2右侧】的条件分布表,总之,各因子都应为已知的值,故可求和。

为便于计算机编程,引入中间过程变量 m Q Q ′ ( x Q ′ ) m_{QQ'}(x_{Q'}) mQQ(xQ),其中, Q Q Q表示本次求和因子中被该和号消去的变量的下标,而 Q ′ Q' Q表示不被该和号消去的变量的下标。 如, ∑ x 2 P ( x 3   ∣   x 2 ) m 12 ( x 2 ) \sum_{x_2}P(x_3\,|\,x_2)m_{12}{(x_2)} x2P(x3x2)m12(x2),求和因子中涉及的变量为 x 2 , x 3 x_2,x_3 x2,x3,其中 x 2 x_2 x2在和号下,将被消去, x 3 x_3 x3不被消去,故该式的运算结果存入 m 23 ( x 3 ) m_{23}(x_3) m23(x3)。 因此,求解过程为逐步“ m m m化”的过程。 因“ m m m化”的运算限制在局部(仅与部分变量相关),有利于编程。

上述逐步“ m m m化”的过程对因子为势函数也适用,其步骤为:

i. 根据图形及势函数定义构造出【西瓜书式(14.2)】或【西瓜书式(14.3)】的联合分布。

ii. 对联合分布用连和方式进行消元,根据图形找到消息传递次序,从而确定求和次序。

iii. 保持求和次序不变,将各因子(势函数)尽量左移,碰到障碍(求和号与它相关)才停下来。

iv. 从右至左,对每个 ∑ \sum 进行“ m m m化”。

【西瓜书式(14.17)(14.18)】即为示例。

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:14.3 条件随机场(链式CRF的条件概率)
下一篇:14.5 学习与推断之信念传播(消息传递的画法及消息计算)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值