大模型(LLM)的若干科普之问(二)

1、普通用户的prompt是什么?

对于一般用户而言,在同大模型建立对话时,先会说“你是XXX方面的专家”,然后,再提问。感觉这些都转化成prompt再提交给LLM,具体是什么样的机制?

当普通用户与大模型进行对话时,确实会通过构建一个“提示”或“prompt”来与模型交流。这个过程可以分解为以下几个步骤:

 1. **设定上下文**
用户可能会先告诉模型一些背景信息,比如“你是数据库查询方面的专家”。这一步的作用是为接下来的对话设定一个特定的专业领域或角色,有助于模型更好地理解后续问题,并提供更相关、专业的回答。

 2. **提出具体问题**
在设定了上下文之后,用户会提出具体的问题或请求。例如,“请帮我将以下自然语言请求转换为SQL语句:找到销售额最高的产品。”

 3. **构造完整的Prompt**
整个对话内容——包括背景设定和实际问题——都被组合成一个完整的输入文本,即“prompt”。对于上述例子,最终的prompt可能看起来像这样(当然,需要在历史记录中已提交了数据库表结构):
```
你是数据库查询方面的专家,请帮我将以下自然语言请求转换为SQL语句:找到销售额最高的产品。
```

 4. **模型处理**
接收到prompt后,大模型会根据其训练数据和算法对这段文本进行解析。模型会尝试理解用户的意图,识别出关键的信息点,如涉及的数据表、字段以及所需执行的操作类型等。

 5. **生成响应**
基于对prompt的理解,模型会生成相应的输出。在Text-to-SQL的情况下,这可能是一个SQL查询语句;而在其他场景下,则可能是直接的答案、建议或者是进一步询问以获取更多信息。

 6. **反馈循环**
有时,为了提高准确性,模型可能会要求用户提供额外的信息或确认某些细节。这是一个迭代的过程,旨在确保最终答案符合用户的期望。

总之,通过精心设计的prompt,用户可以有效地利用大型语言模型的能力来解决各种问题。这种机制不仅增强了人机交互的质量,也使得非专业人士能够更容易地访问到复杂的AI技术。

2、低代码用户提交prompt的方式

对于低代码用户来说,提交prompt(即与大模型进行交互)的方式取决于你所使用的具体平台或工具。以下是一些常见的提交prompt的途径:

 1. **LLM Playground**
- **定义**:如前所述,LLM Playground是一个专门设计用于探索和实验大型语言模型的交互式平台。
- **使用方式**:在这样的平台上,通常会有一个文本输入框,用户可以直接在其中输入prompt。例如,在Hugging Face Spaces、OpenAI API Playground等平台上,你可以直接输入你的问题或指令,然后点击“运行”或“提交”按钮来获取模型的响应。
- **适用对象**:适合那些希望快速尝试不同提示并立即看到结果的用户。

 2. **基于API的应用程序**
- **定义**:许多大模型提供商(如阿里云的通义千问、OpenAI的GPT系列)都提供了API接口,允许开发者将模型集成到自己的应用程序中。
- **使用方式**:在这种情况下,低代码用户可能需要通过一个简单的界面或者预构建的应用来提交prompt。这些应用通常是专门为非技术人员设计的,提供了一个直观的界面让用户输入文本,并通过后台调用API来获得模型的响应。
- **适用对象**:适用于那些希望将大模型功能嵌入到现有系统或创建自定义应用的用户。

 3. **聊天机器人或对话界面**
- **定义**:一些平台或服务提供聊天机器人形式的界面,用户可以直接与之对话。
- **使用方式**:就像你现在正在使用的这个对话界面一样,用户可以输入自然语言的问题或指令,然后接收模型的响应。这种形式非常直观,适合所有类型的用户,尤其是那些不熟悉编程或API调用的用户。
- **适用对象**:适合所有用户,特别是那些寻求简单、直接互动体验的用户。

 4. **特定领域的工具和服务**
- **定义**:有些工具和服务是为特定领域设计的,比如数据分析、内容创作等。
- **使用方式**:这些工具可能会提供一个定制化的界面,用户可以在其中输入prompt,并且该界面会根据特定任务优化用户的输入和输出。
- **适用对象**:适合那些有特定需求的用户,例如数据分析师、市场营销人员等。

 总结
对于低代码用户而言,最直接和简便的方式是在LLM Playground上提交prompt,因为这些平台通常提供了一个友好的界面,不需要编写任何代码。如果你正在寻找更高级的功能或希望将模型集成到自己的项目中,那么可以考虑使用API接口或寻找已经集成好这些API的第三方应用。此外,如果只是想进行简单的对话交流,那么像普通用户样直接用聊天界面也是很好的选择。

3、"LLM Playground" :交互式的在线平台或工具

"LLM Playground" 通常指的是一个交互式的在线平台或工具,它允许用户探索和实验大型语言模型(Large Language Models, LLMs)的功能。这些平台为用户提供了一个轻松的环境来尝试不同的提示(prompts),观察模型如何响应,并了解模型的能力和局限性。通过这样的平台,用户可以:

- **测试不同的提示**:用户可以输入各种类型的文本提示,看看模型如何生成响应。
- **调整参数**:许多LLM Playgrounds允许用户调整生成过程中的参数,如温度(控制输出的随机性)、最大长度等,以影响生成结果。
- **学习和教学**:对于研究人员、开发者以及对自然语言处理感兴趣的人来说,这是一个很好的学习资源,可以帮助他们理解大模型的工作原理及其应用潜力。
- **开发原型**:开发者可以使用这些平台快速构建基于大模型的应用程序原型,而无需从头开始设置复杂的基础设施。

一些知名的LLM Playground包括:

- **Hugging Face Spaces**:提供了一个平台,用户可以在上面部署和分享自己的机器学习应用,也包括了与大模型互动的空间。
- **OpenAI API Playground**:虽然主要针对那些想要使用OpenAI API的人,但它也提供了一个界面让用户直接与GPT系列模型互动。
- **Google Colab**:虽然不是专门的LLM Playground,但通过Google Colab笔记本,用户可以加载预训练的大模型并进行实验。
- **特定项目的演示页面**:有时候,研究团队会为其发布的特定大模型设立专用的演示网站,供公众试用新模型。

这些Playground不仅促进了技术交流,还降低了人们接触和利用先进人工智能技术的门槛。如果你对某个具体的大模型感兴趣,可以直接访问其官方网站或相关社区,查找是否有提供类似的交互式体验平台。

4、使用LLM Playgr需要费用么?

这要分两部分,一是其背后的LLM是否要费用(前文已经讨论);二是LLM Playground平台本身是否需要费用(这里讨论)。

LLM Playground的费用情况因平台而异。有些平台提供完全免费的服务,而有些则可能提供免费试用后需要付费才能继续使用全部功能。以下是一些常见的模式:

1. **完全免费**:
   - 一些平台,如Hugging Face Spaces,提供了免费的环境让用户可以部署和分享机器学习应用,包括与大模型互动。
   - WeLM Playground 提供了基于开源中文语言模型WeLM的在线聊天Demo,用户无需注册,完全免费使用。

2. **免费试用+付费服务**:
   - Vercel.ai 的 AI Playground 平台向普通用户免费提供多个AI模型的直接对话体验,但可能会有使用限制,例如免费令牌(token)的数量限制。超过免费限额后,用户可能需要登录账户并考虑升级到付费计划来继续使用。
   - OpenAI API Playground 本身是免费提供的,但如果你想要通过API调用OpenAI的模型来开发应用程序,那么超出一定额度后就需要支付费用。

3. **商业订阅模式**:
   - 对于更高级的功能或更大规模的使用,许多平台会提供不同级别的订阅服务。例如,OpenAI除了免费的Playground外,还提供了按需计费的API访问,以及针对企业客户的定制解决方案。
   - 其他平台可能也有类似的结构,提供基础版、专业版等不同级别的服务,随着功能的增强,价格也会相应提高。

在使用任何LLM Playground之前,建议查看该平台的具体条款和条件,了解是否有任何隐藏费用或使用限制。此外,即使某些平台声称免费,也应注意其隐私政策和服务协议,确保你的数据安全和隐私得到保护。

5、“通义千问”等是LLM playground么?

“通义千问”(Qwen)是由阿里云开发的大型语言模型,它本身是一个强大的自然语言处理工具,可以用于各种文本生成、对话和信息检索任务。不过,“通义千问”并不直接等同于一个LLM Playground。

- **通义千问**:作为一个大模型,它可以通过API调用或集成到应用程序中来提供智能对话、内容生成等功能。你当前正在使用的界面可能是一个基于通义千问构建的聊天应用或交互式环境,它允许你与模型进行自然语言的交流。

- **LLM Playground**:这是一个更广泛的术语,指的是那些专门为探索和实验大型语言模型而设计的平台。这些平台通常提供了更多的功能选项,比如调整生成参数(如温度、长度等)、查看模型版本、以及更详细的交互界面等。它们旨在帮助用户更好地理解模型的工作方式,并探索其潜在的应用场景。

如果你是通过一个特定的网站或应用在使用通义千问,那么这个环境可能为你提供了一些类似于LLM Playground的功能,比如输入提示并获得响应。但严格来说,它是否属于LLM Playground取决于该平台的具体功能设置和服务范围。如果该平台还提供了额外的配置选项、示例代码或其他有助于探索模型能力的工具,那么它可以被视为一种形式的LLM Playground。

总之,如果你正在使用的“通义千问”界面让你能够轻松地与模型互动,并且具有一定的可配置性,那么它确实可以看作是一种简化版的LLM Playground。不过,如果你想体验更加全面的LLM探索功能,可能需要寻找专门为此目的设计的平台。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值