大型语言模型(LLM)通常为用户提供两种使用方式,一是为普通用户提供聊天界面方式;二是为专业用户提供API方式。
一、聊天界面
在大型语言模型(LLM)的聊天界面中,通常会提供多种功能来增强用户体验、提高交互效率,并满足不同场景的需求。以下是常见的功能及其说明:
1. 核心功能
1.1 发送消息
- 用户输入文本后,点击“发送”按钮或按
Enter
键,将消息发送给模型。 - 支持文本、表情符号、链接等内容。
1.2 接收回复
- 模型生成回复后,显示在聊天界面中。
- 回复可能是纯文本、格式化文本(如 Markdown)、代码块等。
1.3 开启新对话
- 清除当前对话历史,开始一个全新的会话。
- 适用于切换话题或保护隐私。
2. 增强功能
2.1 多轮对话
- 保留对话历史,模型可以根据上下文生成更连贯的回复。
- 用户和模型的交互会显示在聊天记录中。
2.2 编辑消息
- 允许用户编辑已发送的消息,模型会根据修改后的内容重新生成回复。
2.3 删除消息
- 用户可以删除自己发送的消息或模型的回复,清理聊天记录。
2.4 复制回复
- 提供一键复制功能,方便用户将模型的回复复制到剪贴板。
2.5 重新生成回复
- 如果对模型的回复不满意,可以点击“重新生成”按钮,让模型生成新的回复。
3. 个性化功能
3.1 调整模型参数
- 允许用户调整生成文本的参数,例如:
- Temperature:控制生成文本的随机性。
- Max Tokens:限制生成文本的最大长度。
- Top-p (Nucleus Sampling):控制生成文本的多样性。
3.2 选择模型
- 提供多种模型选项(如 GPT-3.5、GPT-4、DeepSeek 等),用户可以根据需求选择。
3.3 设置系统角色
- 允许用户定义模型的角色和行为,例如:
- “你是一个专业的翻译助手。”
- “你是一个幽默的聊天伙伴。”
4. 实用工具
4.1 代码高亮
- 如果模型返回代码,界面会支持代码高亮,方便开发者阅读。
4.2 格式化文本
- 支持 Markdown 或其他格式化文本,例如加粗、斜体、列表等。
4.3 文件上传
- 允许用户上传文件(如文本、图片、PDF),模型可以基于文件内容生成回复。
4.4 语音输入
- 支持语音转文字功能,用户可以通过语音输入消息。
4.5 翻译功能
- 提供一键翻译功能,将模型的回复翻译成用户指定的语言。
5. 管理与分享功能
5.1 保存对话
- 允许用户将对话记录保存为文本文件或其他格式。
5.2 导出对话
- 支持将对话导出为 PDF、Markdown 等格式,方便分享或存档。
5.3 分享链接
- 生成对话的分享链接,其他人可以通过链接查看对话内容。
5.4 历史记录
- 提供历史对话记录列表,用户可以查看或继续之前的对话。
6. 用户体验优化
6.1 实时流式输出
- 模型生成回复时,以流式方式逐字显示,减少等待时间。
6.2 加载状态
- 在模型生成回复时,显示加载动画或提示,让用户知道系统正在处理。
6.3 错误提示
- 如果模型生成失败或出现错误,显示友好的错误提示信息。
6.4 夜间模式
- 提供夜间模式或主题切换功能,适应不同用户的视觉偏好。
7. 高级功能
7.1 自定义指令
- 允许用户设置自定义指令,例如:
- “始终用英文回复。”
- “尽量简洁地回答。”
7.2 多语言支持
- 支持多种语言的输入和输出,满足全球用户的需求。
7.3 插件集成
- 集成第三方插件或工具,例如:
- 计算器
- 搜索引擎
- 知识库查询
7.4 协作功能
- 支持多人协作聊天,多个用户可以同时与模型交互。
8. 安全与隐私功能
8.1 内容过滤
- 自动过滤不当内容,确保对话内容符合社区规范。
8.2 隐私模式
- 提供隐私模式,对话记录不会被保存或用于模型训练。
8.3 数据清除
- 允许用户手动清除所有对话记录和相关数据。
二、API
就是由专业人士编写程序(如,Python 程序),在程序中按要求调用LLM提供的API,再在某个环境中执行。
1.执行含API的程序
例如,Python 程序:
Python 环境:确保你有一个 Python 环境(建议使用 Python 3.6 或更高版本)。
安装依赖:你需要安装 openai
库。可以通过以下命令安装:
pip install openai
API 密钥:你需要将 "<your API key>"
替换为你自己的 DeepSeek API 密钥。
执行环境的选择:
- 本地机器:你可以在本地计算机上运行这个程序,只需确保安装了 Python 和
openai
库。 - 云服务器:你可以在云服务器(如 AWS、Google Cloud、Azure 等)上运行这个程序。
- Jupyter Notebook:你可以在 Jupyter Notebook 或 Google Colab 中运行这个程序。
- Docker 容器:你可以将程序打包到 Docker 容器中运行。
示例步骤(在本地机器上运行):
- 打开终端或命令行。
- 创建一个新的 Python 文件,例如
deepseek_chat.py
,并将上述代码粘贴到文件中。 - 替换
"<your API key>"
为你的实际 API 密钥。 - 运行脚本:
python deepseek_chat.py
要求:
- 网络连接:确保你的设备能够访问
https://api.deepseek.com
。 - API 配额:注意 API 调用的配额和费用,避免超出限制。
2.支持API的程序
有多种程序语言支持它。这个仅几个你感觉一下:
1、用命令行的方式,即用curl
curl https://api.deepseek.com/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <DeepSeek API Key>" \
-d '{
"model": "deepseek-chat",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
"stream": false
}'
2、用Python语言
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
3、用JavaScript,即在Node.js中
// Please install OpenAI SDK first: `npm install openai`
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: 'https://api.deepseek.com',
apiKey: '<DeepSeek API Key>'
});
async function main() {
const completion = await openai.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }],
model: "deepseek-chat",
});
console.log(completion.choices[0].message.content);
}
main();