模式识别
QiYe005
天道酬勤
展开
-
2 拉格朗日对偶(Lagrange duality)
转自2 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数。 然后分别对w和clip_image003[15]转载 2015-08-04 10:45:10 · 437 阅读 · 0 评论 -
3.1 线性不可以分
转自3.1 线性不可以分 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。 看下面两张图: 可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏转载 2015-08-04 11:10:21 · 891 阅读 · 0 评论 -
SVM(一) 问题的提出
转自SVM(一) 问题的提出 SVM是支持向量机从诞生至今才10多年,发展史虽短,但其理论研究和算法实现方面却都取得了突破性进展,有力地推动机器学习理论和技术的发展。这一切与支持向量机具有较完备的统计学习理论基础的发展背景是密不可分的。 我看了一下网上的帖子和有关的资料,目前关于SVM大约有3到4个版本,但在网上到处都是转载的内容,最后谁叶不知原稿人是谁。svm主要分有4个问题 1.问题转载 2015-08-04 10:13:30 · 381 阅读 · 0 评论 -
ISING模型
写在前面的话,本博客是我在学习《图像理解理论与方法》5.2.3章节不懂的情况下通过网页查询找到的,感觉不错转载过来。 原网页:http://wiki.swarma.net/index.php/ISING模型 感谢分享! 正文: 1. ISING模型简介 可以毫不夸张地说,Ising模型是统计物理中迄今为止唯一的一个同时具备:表述简单、内涵丰富、应用广泛这三种优点的模型。Ising模型转载 2015-09-23 15:21:27 · 14162 阅读 · 1 评论