算法习题

本文是关于算法习题的研究总结,重点探讨了斐波那契数列的实现,并提供了实例。同时,文章还涉及到了在一定范围内寻找因子和等于自身的完数问题。
摘要由CSDN通过智能技术生成

1.简介

最近一直在做算法到研究,有幸和几个朋友研究算法题,这篇文章主要是在习题中的一个汇总。

  1. 输入一个正整数repeat ,repeat>0&&repeat<10 ,做repeat次下列运算
    输入2个正整数m和n(1<=m,n<=1000),输出m到n之间到所有完数(完书就是因子和它本身相等到数)
/**
 * Created by 夜夜 on 16/10/13.
 * 输入一个正整数repeat(0<repeat<10),做repeat次下列运算
 * 输入2个正整数m和n(1<=m,n<=1000),输出m到n之间到所有完数(完书就是因子和它本身相等到数)
 * 备注:
 * 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。如果一个数恰好等于它的因子之和,则称该数为“完全数”
 */
import java.util.Scanner;
import java.text.DecimalFormat;
public class Maths {

    public String test(){

        String result="";
        //利用Scanner读取repeat数据
        Scanner in = new Scanner(System.in); // Scanner类
        System.out.println(
文件夹 PATH 列表 卷序列号为 0000002C 486B:877C C:. │ tree.txt │ 说明.txt │ ├─01第1 │ book1_1.xls │ data.mat │ data1_1.txt │ eti1_5.lg4 │ eti1_6.lg4 │ eti1_7.lg4 │ eti1_8_1.m │ eti1_8_2.m │ eti1_8_3.m │ eti1_8_4.lg4 │ eti_1_9.lg4 │ ex.txt │ ti1_1_1.m │ ti1_1_2.lg4 │ ti1_2_1.m │ ti1_2_2.lg4 │ ti1_3_1.lg4 │ ti1_3_2.lg4 │ ti1_4_1.m │ ti1_4_2.lg4 │ ├─02第2 │ data2_1.txt │ data2_2.txt │ eti2_5_1.m │ eti2_5_2.lg4 │ eti2_6_1.m │ eti2_6_2.lg4 │ fen.txt │ gai.txt │ shuchu.txt │ sj.txt │ ti2_2.lg4 │ ti2_3.lg4 │ ti2_4_1.m │ ti2_4_2.lg4 │ ti2_4_3.lg4 │ ti2_4_4.m │ ti2_4_5.m │ ti2_4_6.lg4 │ ├─03第3 │ eti3_5.lg4 │ eti3_6_1.m │ eti3_6_2.lg4 │ eti3_6_3.lg4 │ eti3_7_1.m │ eti3_7_2.lg4 │ ex37.txt │ fun3_2.m │ fun3_3.m │ fun3_4.m │ fun3_5.m │ ti3_1.lg4 │ ti3_1.m │ ti3_2.m │ ti3_3.m │ ti3_4_1.m │ ti3_4_2.lg4 │ ├─04第4 │ eti4_10.m │ eti4_11.m │ eti4_12_1.m │ eti4_12_2.lg4 │ eti4_13.m │ eti4_14.m │ eti4_15.m │ eti4_16.m │ eti4_17.m │ ti4_1.m │ ti4_2.m │ ti4_3.m │ ti4_4.m │ ti4_5_1.lg4 │ ti4_5_2.lg4 │ ti4_6_1.m │ ti4_6_2.lg4 │ ti4_7_1.lg4 │ ti4_7_2.lg4 │ ti4_7_3.lg4 │ ti4_8.m │ ti4_9.lg4 │ txt41.txt │ ├─05第5 │ data51.txt │ data53.txt │ data54.txt │ eti5_5.m │ eti5_6.m │ eti5_7_1.m │ eti5_7_2.m │ eti5_8.m │ ti5_1.m │ ti5_2.m │ ti5_3.m │ ti5_4.m │ ├─06第6 │ eti6_10.m │ eti6_11.m │ eti6_12.m │ eti6_7_1.m │ eti6_7_2.m │ eti6_8_1.m │ eti6_8_2.m │ eti6_9.m │ ti6_1_1.m │ ti6_1_2.m │ ti6_2.m │ ti6_5_1.m │ ti6_5_2.m │ ti6_6.m │ ├─07第7 │ ti7_1.m │ ti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值