【推荐系统】
对推荐系统方向的书和论文进行阅读并记录
KryHan
今晚拯救地球,有事请留言
展开
-
【DeepCTR库】学习入门笔记02
feature columnfeature column.py类别特征处理:SparsFeat数值特征处理:DenseFeat序列特征处理:VarLenSparseFeat原创 2022-05-13 23:02:48 · 863 阅读 · 0 评论 -
十个推荐系统的开源项目
10个开源的推荐系统1、muricoca/crabhttps://github.com/muricoca/crab2、ibayer/fastFMhttps://github.com/ibayer/fastFM3、Mendeley/mrechttps://github.com/mendeley/mrec4、MrChrisJohnson/logistic-mfhttps://github.com/MrChrisJohnson/logistic-mf5、jadianes/winerama-rec原创 2022-04-08 12:14:38 · 2627 阅读 · 0 评论 -
推荐系统之路
目录推荐系统常见行业应用电商资讯游戏视频推荐系统学习路径推荐算法工程师算法基础--->机器学习--->代码能力--->工程能力--->推荐系统相关技术简介召回排序重排推荐算法岗位面试要点深度之眼直播课笔记推荐系统常见行业应用电商淘宝资讯头条游戏腾讯游戏视频爱奇艺推荐系统学习路径推荐算法工程师算法基础—>高等数学线性代数概率论离散数学机器学习—>传统模型:LR、SVM、决策树等深度学习模型:DNN、LSTM、GRU图模型:应用在原创 2022-04-06 21:05:31 · 3384 阅读 · 0 评论 -
【推荐系统笔记】-1.排序服务相关
深度之眼推荐系统笔记原创 2022-03-30 00:26:09 · 269 阅读 · 0 评论 -
传统嵌入层图解(DIN)
目录传统嵌入层图解数据介绍用户端商品端处理方法模型设计运算流程输入Embedding层:Concat层:Activation Unit:Sum Pooling层:Concat和Flatten层:全连接网络层:输出层:DIN模型论文中对传统嵌入层解析传统嵌入层图解数据介绍用户端用户端的特征主要包含画像特征和多组行为序列特征;商品端主要包含画像特征;上下文特征包含时间、网络、地点、终端等特征。处理方法处理类别特征主要采用Embedding方式,连续特征采用分桶、归一化、或log等方式进行原创 2021-12-25 14:57:31 · 648 阅读 · 0 评论 -
模拟面试算法岗
本文是对这个百分百还原985学生面试阿里算法岗视频的一些总结启发,也是为自己今后面试积累经验。自我介绍我是xxx,是一名研二的学生,我的研究方向是推进系统,目前的成果(论文,竞赛,项目)...原创 2021-09-03 12:50:13 · 131 阅读 · 0 评论 -
【deepctr】学习入门笔记01
目录了解准备工作1.下载包2.导入pycharm3.导入所需包代码(例:run_classification_criteo.py)导入所需包数据预处理1.对稀疏特征进行标签编码,对稠密特征进行简单转换2.计算每个稀疏字段的唯一特征数,并记录密集特征字段名称3.为模型生成输入数据4.定义模型、培训、预测和评估了解浅梦大神的这个写的还是就我而言 我觉得非常好了,非常值得操作一下DeepCTR:易用可扩展的深度学习点击率预测算法包首先下面两个链接是你最先需要了解的github这个是这个包的开源代码(附数原创 2021-01-29 21:21:54 · 2643 阅读 · 2 评论 -
FM、FFM等ctr模型的整理分析
目录FM结构图理解FFM结构图理解ONN二级目录三级目录FM结构图理解FM的embedding层并没有对特征区分不同的操作,embedding之后即对 ei进行内积操作得到结果后简单的输出最终结果FFM结构图理解FFM相比FM在embedding层加入了文中的operation-aware操作,即对每次不同的内积操作,同一个特征的embedding方法是不同的。但相比ONN没有deep部分以及embedding的原始结果作为deep部分的输入,所以表现力还是有所欠缺。ONN二级目录原创 2021-07-12 15:46:48 · 257 阅读 · 0 评论 -
论文阅读笔记---《基于深度学习的推荐系统研究综述》
基于深度学习的推荐系统研究综述摘要摘要原创 2021-06-17 16:35:36 · 219 阅读 · 0 评论 -
【笔记】cs224w图神经网络
图神经网络01 intro01 intro网络的部分组成:网络和图区别:对于网络来说,图是网络的数学表示无向图 和 有向图节点的度(节点周围边的数量)完整图二部图图表示:邻接矩阵原创 2021-06-17 16:29:43 · 80 阅读 · 0 评论 -
模型介绍及特点
Word2Vec 词向量 训练得到词的向量表示、广泛应用于 NLP 、推荐等任务场景。GraphNeuralNetwork 召回 SR-GNN,全称为 Session-based Recommendations with Graph Neural Network(GNN)。使用 GNN 进行会话序列建模。DeepInterestNetwork 排序 DIN,全称为 Deep Interest Network。特点为对历史序列建模的过程中结合了预估目标的信息。DeepFM 推荐系统 DeepFM,全称原创 2021-06-17 16:33:34 · 305 阅读 · 0 评论 -
《 推荐系统的矩阵分解技术》论文精读(翻译)
IEEE Computer, pp. 30-37, 2009. 被引用:4699Matrix Factorization Techniques for Recommender Systems摘要关键词简介重点内容结果结论总结引用论文PDF地址:原文PDF原文地址: 原文摘要正如Netflix奖竞赛所证明的那样,矩阵分解模型在产生产品推荐方面优于经典的最近邻技术,允许结合附加信息,如隐式反馈、时间效应和置信度。关键词可信度、矩阵分解技术、矩阵分解模型、附加说明、推荐系统、产品推荐、隐性原创 2020-10-14 17:56:41 · 907 阅读 · 0 评论 -
《推荐系统实战》思维导图
仅用于参考学习链接: 书、图片及PDF原创 2020-10-11 16:48:15 · 236 阅读 · 0 评论 -
论文阅读笔记---《基于知识图谱的推荐系统研究综述》
目录摘要关键词1 引言2 研究背景2.1 推荐系统摘要推荐系统旨在为用户推荐个性化的在线商品信息,其广泛应用于web场景处理因海量信息数据所导致的信息过载的问题,以提升用户体验知识图谱可有效解决推荐系统中数据稀疏、冷启动、推荐多样性等问题首先介绍推荐系统和知识图谱的一些概念随后详细介绍现有方法如何挖掘知识图谱不同种类的信息并应用于推荐系统此外总结了一系列推荐应用场景最后提出了前景的看法,展望了未来的研究方向关键词知识图谱,推荐系统,协同过滤,异质信息网络,图嵌入1 引言核心目标原创 2020-10-11 16:19:34 · 1201 阅读 · 0 评论 -
阿里的《基于pai的推荐系统》--摘抄笔记
目录推荐系统简介一、什么是推荐系统(一)常见的推荐业务场景(二)个性化推荐业务流程企业级推荐系统架构(一)企业级推荐系统要求(二)推荐整体架构(三)基于PAI的推荐技术架构推荐系统召回算法一、召回模块在推荐系统中的位置二、推荐场景--召回算法介绍三、什么是协同过滤四、向量召回架构说明推荐系统排序算法一、排序模块在推荐系统中的位置二、排序算法介绍三、离线排序模型训练架构四、在线排序模型训练架构推荐系统线上服务编排一、在线推理服务 - 架构说明二、线上多目标问题基于 PAI 10 分钟搭建一个简单推荐系统一、个原创 2020-09-23 18:41:32 · 1256 阅读 · 0 评论