目录
DIN模型论文中对传统嵌入层解析
传统嵌入层图解
数据介绍
用户端
用户端的特征主要包含画像特征和多组行为序列特征;
商品端
主要包含画像特征;上下文特征包含时间、网络、地点、终端等特征。
处理方法
处理类别特征主要采用Embedding方式,连续特征采用分桶、归一化、或log等方式进行转化。
模型设计运算流程
输入
(1)用户的画像特征,例如性别、年龄、学历等;
(2)用户的行为序列数据,例如点击商品的行为序列、购买商品的行为序列;
(3)候选商品的画像特征,例如品类、品牌等;
(4)上下文特征,例如设备终端、时间、地点等;
Embedding层:
将输入层的特征映射为固定长度的向量;
Concat层:
将Embedding向量组合为一个向量;
Activation Unit:
计算候选商品与历史行为商品之间的权重。该模块可以认为是一个独立的MLP;
Sum Pooling层:
将用户历史行为的商品Embedding进行Sum操作;
Concat和Flatten层:
将以上的Embedding合并,并展平;
全连接网络层:
经过两层全连接,并使用自定义Dice激活函数激活神经元;
输出层:
对全连接网络层的结果进行Softmax操作,返回最大值的索引作为预测结果;