传统嵌入层图解(DIN)

本文详细解析了深度兴趣网络(DIN)模型,重点介绍了传统嵌入层在用户行为序列和商品画像特征处理中的应用。DIN模型通过用户画像、行为序列、商品特征和上下文信息,利用Embedding、Concat、ActivationUnit和全连接网络等层进行信息融合,最终通过Softmax预测用户可能的兴趣。模型特别关注用户历史行为与候选商品之间的相关性权重计算,以提升推荐的精准度。
摘要由CSDN通过智能技术生成

DIN模型论文中对传统嵌入层解析

传统嵌入层图解

在这里插入图片描述

数据介绍

用户端

用户端的特征主要包含画像特征和多组行为序列特征;

商品端

主要包含画像特征;上下文特征包含时间、网络、地点、终端等特征。

处理方法

处理类别特征主要采用Embedding方式,连续特征采用分桶、归一化、或log等方式进行转化。

模型设计运算流程

输入

(1)用户的画像特征,例如性别、年龄、学历等;
(2)用户的行为序列数据,例如点击商品的行为序列、购买商品的行为序列;
(3)候选商品的画像特征,例如品类、品牌等;
(4)上下文特征,例如设备终端、时间、地点等;

Embedding层:

将输入层的特征映射为固定长度的向量;

Concat层:

将Embedding向量组合为一个向量;

Activation Unit:

计算候选商品与历史行为商品之间的权重。该模块可以认为是一个独立的MLP;

Sum Pooling层:

将用户历史行为的商品Embedding进行Sum操作;

Concat和Flatten层:

将以上的Embedding合并,并展平;

全连接网络层:

经过两层全连接,并使用自定义Dice激活函数激活神经元;

输出层:

对全连接网络层的结果进行Softmax操作,返回最大值的索引作为预测结果;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KryHan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值