目录
一、引言
1.1 项目背景
当前社会热点议题等公共讨论日益频繁,但传统辩论教育存在高门槛(需专业教练)、低互动(缺乏实时反馈)和资源不均(优质内容稀缺)的痛点。本项目通过深度融合大语言模型(DeepSeek)与教育技术,打造零门槛、高交互、智能化、沉浸式的AI辩论训练平台,通过技术赋能思维训练,解决思维训练领域的“教-学-练-评”闭环难题。
1.2 设计目标
- 实现低延迟(<500ms)的实时辩论交互
- 构建10+维度的智能评估体系
- 支持100+并发用户的稳定服务
二、系统架构
2.1 技术架构
分层架构如下:
1. 用户层:Web端接入
2. 应用层
- 辩论引擎(Debate Engine)
- 评估系统(Evaluation System)
- 社交服务(Social Service)
3. 服务层
- DeepSeek大模型接口
- 数据分析服务
4. 数据层
- 用户数据库
- 辩论案例库
- 评估模型参数库
2.2 技术选型
模块 | 技术栈 |
前端 | Vue3 + Element Plus |
后端 | FastAPI + MySQL+Redis |
实时交互 | WebSocket + JSON消息协议 |
数据处理 | Scrapy爬虫 + NLP清洗工具 |
部署 | Docker + Kubernetes |
三、核心模块设计
3.1 用户认证模块
users
├── register_user()
├── login_user()
├── get_captcha()
├── validate_code()
├── send_email_code()
└── verify_email_code()
关键流程:
3.2 智能陪练引擎
辩论状态机:
class DebateStateMachine:
INITIALIZE → TOPIC_SELECTION → POSITION_ASSIGNMENT
→ ARGUMENT_EXCHANGE → REBUTTAL_PHASE → CONCLUSION
→ FEEDBACK_GENERATION
实时交互协议:
{
"session_id": "DEB20240501_001",
"user_input": "人工智能威胁人类就业",
"ai_response": {
"text": "但AI创造的新岗位数量...",
"attack_points": ["经济转型", "生产力提升"],
"confidence 0.87
},
"timestamps": {
"processing_time": 420ms
}
}
3.3 动态评估系统
评估维度矩阵:
维度 | 评估指标 | 权重 |
逻辑性 | 论点连贯性、漏洞数量 | 35% |
说服力 | 证据强度、情感影响 | 30% |
语言质量 | 语法错误、词汇多样性 | 20% |
策略性 | 反驳有效性、节奏控制 | 15% |
评估算法伪代码:
def evaluate_debate(session):
logic_score = analyze_argument_flow(session.transcript)
persuasion_score = calculate_evidence_strength(session.sources)
language_score = check_grammar(session.text) + lexical_diversity(session.text)
return WeightedAverage([0.35, 0.3, 0.2, 0.15],
[logic_score, persuasion_score, language_score, strategy_score])
3.4 辩论仿真系统
角色生成模板:
## 辩手配置文件
{
"style": "Aggressive|Neutral|Defensive",
"knowledge_base": ["经济学", "伦理学", "科技史"],
"argument_strategy": {
"opening": "三段式立论",
"rebuttal": "归谬法反击"
}
}
四、接口设计
4.1 辩论核心接口
POST /api/v1/debate/start
请求体:
{
"user_id": "U123456",
"topic": "科技发展利大于弊",
"position": "pros",
"difficulty": 5
}
响应体:
{
"session_id": "DEB20240501_001",
"ai_first_statement": "科技发展推动人类..."
}
4.2 评估报告接口
GET /api/v1/report/{session_id}
{
"radar_chart": {
"dimensions": ["逻辑性", "说服力", "语言质量"],
"scores": [85, 78, 92]
},
"improvement_plan": [
"建议加强归谬法训练",
"推荐阅读《批判性思维指南》第三章"
]
}
五、测试策略
1. 模型有效性测试
- 使用国际辩论赛标准题库进行盲测
- 专家评分与系统评分一致性
2. 压力测试
- 模拟5+并发用户辩论场景
- 长时对话稳定性测试(>10轮)