【新进展】如何更智慧地让大语言模型使用外部数据?

今天来分享一篇9月刚发的微软亚洲研究院的综述。看完就能从全局角度明白各类大规模语言模型(LLM)数据增强技术之间究竟是个什么关系和什么用途。

本文的主旨是全面介绍并探讨“检索增强生成”(Retrieval-Augmented Generation,RAG)及其扩展在LLM中的应用与挑战。随着LLM在不同领域中展现出非凡的潜力,如何有效地利用外部数据来提升这些模型的性能成为了一个关键问题。RAG通过引入外部数据,不仅能够补充模型的领域知识,还能增强其时效性和专业性,减少“幻觉”的产生。然而,尽管RAG方法在某些应用中展现出优势,如何在不同领域中实现其高效应用仍面临着诸多挑战。

1. 背景与介绍

RAG结合了自然语言生成与信息检索的优势,使模型可以在生成答案的过程中动态检索相关的外部信息。通过引入外部数据,LLM能够增强其在领域知识和时效性方面的表现。然而,如何将这种方法应用于特定领域,仍面临着复杂的挑战。文献指出,许多开发者在应用RAG时,往往面临数据检索、用户意图理解、推理能力发挥等方面的困难。

2. 问题定义

文献将数据增强的LLM应用分为四个层次:显性事实查询、隐性事实查询、可解释的推理查询以及隐性推理查询。显性事实查询是最简单的查询类型,模型只需从外部数据中检索并提取明确的信息。而隐性事实查询则要求模型进行一定的推理,如跨文档的逻辑推导或简单的常识推理。对于可解释的推理查询,模型需要理解并运用特定领域的逻辑与规则来生成合理的答案。而隐性推理查询则涉及复杂的逻辑链条,这些推理往往难以通过简单的规则进行描述,需要模型通过数据挖掘或隐含知识来进行回答。

3. 显性事实查询(L1)****

显性事实查询是最基础的查询类型,通常只需要从给定的外部数据中检索出明确的答案,几乎不需要复杂的推理。此类查询的主要挑战在于如何有效地检索相关数据。在这个层面,RAG的主要作用是从大规模的外部数据集中准确提取出相关的信息。

  • 数据处理:由于外部数据往往是非结构化的,因此如何对这些数据进行预处理、分段,并保持其上下文的完整性是关键问题之一。

  • 数据检索:检索相关数据片段的过程往往非常耗费计算资源,且容易出错。

  • 评价困难:如何评估系统的性能是一个复杂的问题,尤其是在涉及数据检索和回答生成的情况下。

4. 隐性事实查询(L2)****

隐性事实查询要求模型从多个文档中提取信息,进行简单的推理和信息汇总。这类查询通常涉及统计、描述性分析等,或者需要通过多跳推理来获取答案。文献提出了多种方法来应对这类查询的挑战,包括迭代RAG、多跳推理RAG等。

针对隐性事实查询,迭代RAG方法(Iterative Retrieval-Augmented Generation)能够有效应对复杂的多步推理需求。迭代RAG通过多轮检索和生成交互,逐步完善模型的答案。这类方法的工作机制包括基于规划的多步检索基于信息差距的检索****。

隐性事实查询还常常要求模型在多个信息源之间进行推理,结合图或树结构能够有效捕捉这些复杂的关联。传统知识图谱:知识图谱将实体和它们之间的关系以图结构表示,适用于需要通过实体间推理来回答的查询。例如,R3引入了LLM生成的常识公理,并依次检索相关的子图来判断是否已有足够信息来解答查询。数据块图或树:基于文本块或数据块作为图的节点构建的图或树,也能够帮助模型进行复杂的推理。例如,RAPTOR通过层次聚类算法将最细粒度的文本块聚类,并为每个聚类层次总结语义信息,帮助模型在折叠的节点树中召回最相关的信息。

隐性事实查询的处理需要更复杂的检索和推理机制。在应对这些查询时,可以结合迭代检索、多跳推理、基于图结构的推理以及NL2SQL等多种方法。不同的任务和领域对这些方法的需求也各不相同,因此需要根据具体问题设计相应的策略和方法。

5. 可解释的推理查询(L3)****

此类查询不仅要求模型能够获取事实,还需要模型能够理解并运用特定领域的推理规则或逻辑链条。文献中列举了多种优化策略,如通过提示优化、链式思维提示等方法,来增强模型的推理能力。

  • 提示优化:手动设计提示往往耗时且需要大量计算资源,而强化学习等自动化方法可以在一定程度上解决这一问题。

  • 链式思维提示(CoT):通过构建多个推理步骤,帮助模型更好地理解复杂的推理任务。虽然手动设计提示十分有效,但成本较高,因此自动化提示生成成为研究重点。

6. 隐性推理查询(L4)

隐性推理查询是最具挑战性的类型,涉及复杂的领域知识和推理链条。这类查询通常无法通过简单的规则或现成的数据来回答,往往依赖于隐含在历史数据中的知识或经验。文献提出了基于离线学习和上下文学习等方法,尝试从外部数据中提取共性经验,帮助模型应对这些复杂的推理任务。

  • 离线学习:通过在离线状态下提取规则和准则,模型可以在推理时更好地应用这些经验。

  • 上下文学习:通过提供相关的示例,模型可以利用其强大的上下文学习能力,从而提升推理准确性。

  • 微调:在某些情况下,对模型进行监督微调可以有效提高其处理复杂任务的能力,但这种方法成本较高且容易引发“幻觉”问题。

7. 结论

文献详细讨论了如何通过RAG等技术来增强LLM的性能,并提供了丰富的实例和解决方案。对于不同层次的查询,开发者需要选择合适的技术手段,如简单的事实检索、迭代检索、多跳推理、提示优化等方法。在实际应用中,RAG与其他技术手段的结合可以有效应对不同领域和任务中的复杂问题。

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值