loj117(有源汇有上下界最小流)

https://www.cnblogs.com/kane0526/archive/2013/04/05/3001108.html

关于有源汇有上下界最小流这篇文章讲得挺好

建图方式是:

把每个边拆成必要边和非必要边,对必要边<i,j>,直接超级源点向j连边,i向超级汇点连边,然后先跑一遍费用流,再往T向S连边,再跑一次费用流,把2次的费用加起来得到结果。。。

其实一般来讲将原图转化成循环流之后跑一次最大流就已经能得到有界最小流了,然而考虑到局部循环流的存在要将这部分局部循环流跑掉才不会浪费,因此才产生了这么一种特殊的姿势。。

还是得学习啊。。

 

 

 

#include<bits/stdc++.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define inf 2147483647
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define NM 50010
#define nm 1000000
#define link(x) for(edge*j=h[x];j;j=j->next)
using namespace std;
int read(){
	int x=0,f=1;char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
	while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
	return x*f;
}

struct edge{int t,v;edge*next,*rev;}e[nm],*h[NM],*o=e;
void _add(int x,int y,int v){o->t=y;o->v=v;o->next=h[x];h[x]=o++;}
void add(int x,int y,int v){_add(x,y,v);_add(y,x,0);h[x]->rev=h[y];h[y]->rev=h[x];}
int n,m,S,T,_x,_y,_v,_t;
ll ans,s;

ll maxflow(int S,int T,int tot){
	ll flow=0;int cnt[NM],d[NM];edge*j,*tmp[NM],*p[NM];
	mem(cnt);mem(d);mem(tmp);mem(p);
	inc(i,0,n)tmp[i]=h[i];
	cnt[0]=tot;
	for(int s=inf,x=S;d[x]<tot;){
		for(j=tmp[x];j;j=j->next)if(j->v&&d[j->t]+1==d[x])break;
		if(j){
			s=min(s,j->v);p[j->t]=tmp[x]=j;
			if((x=j->t)==T){
				for(;p[x];x=p[x]->rev->t)p[x]->v-=s,p[x]->rev->v+=s;
				flow+=s;s=inf;
			}
		}else{
			if(!--cnt[d[x]])break;d[x]=tot;
			link(x)if(j->v&&d[x]>d[j->t]+1)d[x]=d[j->t]+1,tmp[x]=j;
			cnt[d[x]]++;
			if(p[x])x=p[x]->rev->t;
		}
	}
	return flow;
}

int main(){
	n=1+read();m=read();S=read();T=read();
	inc(i,1,m){
		_x=read();_y=read();_t=read();_v=read();s+=_t;
		add(_x,_y,_v-_t);add(0,_y,_t);add(_x,n,_t);
	}
	ans=maxflow(0,n,n+1);
	add(T,S,inf);
	if(ans+maxflow(0,n,n+1)<s)return 0*printf("please go home to sleep\n");
	return 0*printf("%d\n",(--o)->v);
}

 

 

 

 

 

 

#117. 有源汇有上下界最小流

内存限制:256 MiB 时间限制:1000 ms 标准输入输出

题目类型:传统 评测方式:文本比较

上传者: 匿名

题目描述

n n n 个点,m m m 条边,每条边 e e e 有一个流量下界 lower(e) \text{lower}(e) lower(e) 和流量上界 upper(e) \text{upper}(e) upper(e),给定源点 s s s 与汇点 t t t,求源点到汇点的最小流。

输入格式

第一行两个正整数 n n n、m m m、s s s、t t t。

之后的 m m m 行,每行四个整数 s s s、t t t、lower \text{lower} lower、upper \text{upper} upper。

输出格式

如果无解,输出一行 please go home to sleep

否则输出最小流。

样例

样例输入

7 12 6 7
6 1 0 2147483647
1 7 0 2147483647
6 2 0 2147483647
2 7 0 2147483647
6 3 0 2147483647
3 7 0 2147483647
6 4 0 2147483647
4 7 0 2147483647
6 5 0 2147483647
5 7 0 2147483647
5 1 1 2147483647
3 4 1 2147483647

样例输出

2

数据范围与提示

1≤n≤50003,1≤m≤125003 1 \leq n \leq 50003 , 1\leq m \leq 125003 1≤n≤50003,1≤m≤125003

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值