长大校赛C(st表+二分)

5人阅读 评论(0) 收藏 举报
分类:

这个题有点意思 。。可能窝的想法和题解不一样。。不过比较容易想到。。

首先从最暴力想起,就是枚举区间端点,再找最次值酱紫。。当然次大值这个还是相当好搞,维护一个st表就可以解决辣。。

如果枚举子区间的话明显是超时的。。然后固定一端另一端也没办法很好地去怎么计数。。所以这个思路可能得放弃了。。

然后貌似是齐齐说过,像这种枚举所有子区间并排序的肯定是要考虑每个元素的贡献?所以尝试求出a[i]的贡献。。

怎么求。。可以先往右延伸,那么可以找到第一个比a[i]大的数a[y]和第二个比a[i]大的数a[_y],怎么找?就是二分嘛。。还好前几天刚做233333

二分可以找到y,然后以x后边的区间进行二分可以找到 _y,然后可行的区间就是包含x而不包含_y的。。即有_y-y个区间

同理向左延伸可以找出_x和x(_x<x)

然后就是同时延伸的情况了。。

其中x和y是一定要包含一个的。。那就分类讨论。。

包含x,那就不包含y,有y-i-1个区间,同理包含y有i-x-1个区间。。

然后就可以算出该位置的贡献了。。进而得到答案。。

然而有个问题是a[i]相同的时候可能会有重复计算。。这个比较好解决。。再以下标为第二关键字,这样就把贡献转移给了一方,就不会重复。。。

这样弄下去时间复杂度为O(nlogn),理论上是能a的。。然而。。 T了!!没错出题人又卡常了!!!

那要怎么优化呢。。。想到的一个方法就是二分的时候二分边界就不改成中间值了,而是直接变为区间最大值所在的位置,这个理论上应该会快一点。。实际上也是快挺多的。。从tle(时限3S)卡到了300ms。。效果还是不错的。。



#include<bits/stdc++.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define inf 1e9
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define link(x) for(edge*j=h[x];j;j=j->next)
#define eps 1e-8
#define succ(x) (1<<(x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define lowbit(x) (x&(-x))
#define NM 100005
#define MAXN 100005
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return x*f;
}
 
 
 
int n,a[NM],tmp[NM],mn[NM];
ll m;
int dp[MAXN][32];int pos[MAXN][32],b[NM];
void st(){
    mem(dp);mem(pos);mem(mn);
    inc(i,2,n)mn[i]=mn[i/2]+1;
    inc(i,0,n+1) dp[i][0]=a[i],pos[i][0]=i;
    for(int j=1;succ(j)<=n;j++)
        for(int i=1;i+succ(j)-1<=n;i++){
            if(dp[i][j-1]>dp[i+(1<<(j-1))][j-1]) dp[i][j]=dp[i][j-1],pos[i][j]=pos[i][j-1];
            else dp[i][j]=dp[i+(1<<(j-1))][j-1],pos[i][j]=pos[i+(1<<(j-1))][j-1];
        }
}
int rmq(int l,int r){
    int k=mn[r-l];
    int t1=dp[l][k];int t2=dp[r-(1<<k)+1][k];
    if(t1>=t2) return pos[l][k];
    else return pos[r-(1<<k)+1][k];
}
int work(int x,int y,int i){
    int s=n+1,k=x;
    for(;x<=y;){
        int t=x+y>>1;
        if(a[rmq(k,t)]>=a[i]){
            y=rmq(k,t)-1;s=rmq(k,t);
        }else x=t+1;
    }
    return s;
}
 
int _work(int x,int y,int i){
    int s=0,k=y;
    for(;x<=y;){
        int t=x+y>>1;
        if(a[rmq(t,k)]>a[i]){
            x=rmq(t,k)+1;s=rmq(t,k);
        }else y=t-1;
    }
    return s;
}
 
bool cmp(int x,int y){
    return a[x]>a[y];
}
 
int main(){
    //freopen("data.in","r",stdin);
    int _=read();
    while(_--){
        n=read();m=read();
        inc(i,1,n)a[i]=read();
        a[n+1]=inf;a[0]=inf;
        st();mem(b);
        inc(i,1,n){
            int x,y,_x,_y;         
            x=_work(0,i-1,i);
            y=work(i+1,1+n,i);
            if(x>1)_x=_work(0,x-1,i);else _x=0;
            if(y<n)_y=work(y+1,n+1,i);else _y=n+1;
        //  printf("%d %d %d %d\n",_x,x,y,_y);
            b[i]=(x-_x)+(_y-y)+(x>=1?(y-i-1)*(x-_x):0)+(y<=n?(i-x-1)*(_y-y):0);
        }
    //  inc(i,1,n)printf("%d ",b[i]);putchar('\n');
        inc(i,1,n)tmp[i]=i;
        sort(tmp+1,tmp+1+n,cmp);
        inc(k,1,n){
            int i=tmp[k];
            if(m<=b[i]){
                printf("%d\n",a[i]);break;
            }
            m-=b[i];
        }
    }
    return 0;
}




链接:https://www.nowcoder.com/acm/contest/102/C
来源:牛客网


The K-th Largest Interval

时间限制:C/C++ 3秒,其他语言6秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

 We define a value of an interval is the second largest number of it's elements, and of course an interval has at least two elements.
Given an array A with n elements and a number k, can you find the value of the kth largest interval?

输入描述:

The first line contains an integer number T, the number of test cases. 
For each test case : 
The first line contains two integer numbers n,k(2 ≤ n ≤ 105,1 ≤ k ≤ n(n−1)/2), the number of test cases. 
The second lines contains n integers Ai(1 ≤ Ai ≤ 109), the elements of array A.

输出描述:

For each test case print the value of the kth largest interval.
示例1

输入

2
3 3
1 2 3
5 1
1 2 2 3 3

输出

1
3

说明

For the sample input, there are three intervals.
Interval [1 2 3] has value 2.
Interval [2 3] has value 2.
Interval [1 2] has value 1.
So the 3rd largest interval is [1 2] whose value is 1.

时间限制:C/C++ 3秒,其他语言6秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

 We define a value of an interval is the second largest number of it's elements, and of course an interval has at least two elements.
Given an array A with n elements and a number k, can you find the value of the kth largest interval?

输入描述:

The first line contains an integer number T, the number of test cases. 
For each test case : 
The first line contains two integer numbers n,k(2 ≤ n ≤ 105,1 ≤ k ≤ n(n−1)/2), the number of test cases. 
The second lines contains n integers Ai(1 ≤ Ai ≤ 109), the elements of array A.

输出描述:

For each test case print the value of the kth largest interval.
示例1

输入

2
3 3
1 2 3
5 1
1 2 2 3 3

输出

1
3

说明

For the sample input, there are three intervals.
Interval [1 2 3] has value 2.
Interval [2 3] has value 2.
Interval [1 2] has value 1.
So the 3rd largest interval is [1 2] whose value is 1.

查看评论

[二分 ST表 杂题] Codeforces875D. High Cry

早知道先看D题就不会掉这么惨了枚举左端点,那么区间或值最多变化log次二分变化的区间,再二分区间或值大于区间最大值的区间用ST表记一下区间最大值、或值#include #include #inc...
  • Coldef
  • Coldef
  • 2017-10-17 13:11:33
  • 310

ST表

风满山楼,执吾之剑,破万重天!
  • WhiStLenA
  • WhiStLenA
  • 2016-08-12 14:38:22
  • 7435

GCD (ST表,二分求区间查询)

HUD 5726 GCD    给一个序列,多次查询区间的最大公约数,并求出同样是这个最大公约数的区间有多少个。 区间查询采用ST表,第二问查询利用区间向右延伸最大公约数递减的规律可通过二分快速找到右...
  • yhn19951008
  • yhn19951008
  • 2016-07-22 20:30:27
  • 366

康托展开【Template】

#include&amp;lt;iostream&amp;gt; #include&amp;lt;cstring&amp;gt; #include&amp;lt;cstdio&amp;gt; #inc...
  • Irish_Moonshine
  • Irish_Moonshine
  • 2018-03-28 12:44:13
  • 17

理解RMQ问题和ST算法的原理

1.RMQ问题     RMQ (Range Minimum/Maximum Query):对于长度为n的数组A,回答若干询问RMQ(A,i,j)(i,jRMQ问题是指求区间最值的问题。最简单的方法...
  • aitangyong
  • aitangyong
  • 2014-05-25 13:16:26
  • 1443

poj2452(st表+二分)

区间最小和最大是十分好解决的。。然而2端点直接枚举会T啊。。 所以最多枚举一个端点。。然后其实根据最小值可以二分求出满足最小值为左端的区间。。。 然后在此基础上把区间最大值的位置求出来就可以了。。...
  • qkoqhh
  • qkoqhh
  • 2018-04-09 14:36:52
  • 4

RMQ--ST表算法理解

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j ST算法(Sparse Tabl...
  • qq1169091731
  • qq1169091731
  • 2016-07-21 11:59:59
  • 1685

ST表算法详解

ST表算法详解(算是吧)ST表就是一个用来解决rmq(区间最值)问题的算法。 ST表不支持在线修改。 预处理时间复杂度O(nlogn),查询时间O(1)。 ST表算法详解(求最小值): 用mn...
  • Hanks_o
  • Hanks_o
  • 2017-08-25 08:21:55
  • 1004

第十四届浙江财经大学程序设计竞赛 D Disport with Jelly【NIM】

链接:https://www.nowcoder.com/acm/contest/89/D 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5...
  • Irish_Moonshine
  • Irish_Moonshine
  • 2018-03-28 12:54:13
  • 34

hdu5726 GCD st表 + 二分

题目描述:给出n( 1 思路:这个问题的突破口在于从第i个数开始,连续向后取gcd,其gcd的值是逐渐变小的,且可能出现的gcd的值只有不超过log(ai)个。            那...
  • jijijix
  • jijijix
  • 2017-02-06 11:07:57
  • 138
    个人资料
    持之以恒
    等级:
    访问量: 5369
    积分: 1306
    排名: 4万+
    最新评论