bzoj2599(点分治)

菜蛙一个错误debug半天qaq

其实很好写。。对没层分治而言,只需要统计到当前根的距离为i所需要的最少边数即可。。不过初始化稍微麻烦一点。。把子数中所有点都存下来然后直接把这几个点对应的距离初始化一下即可。。这样才能把复杂度降到O(nlogn)

然而还是跑得太慢了。。估计选根这里写的常熟有点大?



/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */ 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-12
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 200005
#define nm 400005
#define N 1000005
#define pi 3.1415926535897931
const int inf=1000000007;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}


struct edge{int t,v;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y,int v){o->t=y;o->v=v;o->next=h[x];h[x]=o++;}
int n,m,_x,_y,_t,size[NM],tot,smin,root,b[NM],c[N],w[NM],ans,cnt;
ll d[NM];
bool v[NM];

void dfs1(int x,int f){size[x]=1;link(x)if(!v[j->t]&&j->t!=f)dfs1(j->t,x),size[x]+=size[j->t];}
void getroot(int x,int f){
    int s=tot-size[x];
    link(x)if(!v[j->t]&&j->t!=f)getroot(j->t,x),s=max(s,size[j->t]);
    if(s<smin)smin=s,root=x;
}

void dfs2(int x,int f){
    if(d[x]>m)return;
    b[++cnt]=x;ans=min(ans,w[x]+c[m-d[x]]);
    link(x)if(!v[j->t]&&j->t!=f){
	d[j->t]=d[x]+j->v;w[j->t]=w[x]+1;
	dfs2(j->t,x);
    }
}


void div(int x){
    dfs1(x,0);
    smin=inf;tot=size[x];
    getroot(x,0);
    v[root]++;cnt=0;
    //printf("%d\n",root);
    link(root)if(!v[j->t]){
	int t=cnt+1;
	d[j->t]=j->v;w[j->t]=1;
	dfs2(j->t,root);
	for(;t<=cnt;t++)if(d[b[t]]<=m)c[d[b[t]]]=min(c[d[b[t]]],w[b[t]]);
    }
    inc(i,1,cnt)if(d[b[i]]<=m)c[d[b[i]]]=inf;c[0]=0;
    link(root)if(!v[j->t])div(j->t);
}


int main(){
    n=read();m=read();ans=inf;
    inc(i,1,n-1){_x=1+read();_y=1+read();_t=read();add(_x,_y,_t);add(_y,_x,_t);}
    inc(i,1,m)c[i]=inf;
    div(1);
    if(ans<inf)printf("%d\n",ans);else printf("-1\n");
    return 0;
}



2599: [IOI2011]Race

Time Limit: 70 Sec   Memory Limit: 128 MB
Submit: 4867   Solved: 1424
[ Submit][ Status][ Discuss]

Description

给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000

Input

第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

Output

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

Sample Input

4 3
0 1 1
1 2 2
1 3 4

Sample Output

2

HINT

 2018.1.3新加数据一组,未重测

Source

[ Submit][ Status][ Discuss]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值