hdu5608(积性函数+欧拉函数+杜教筛+莫比乌斯反演)

这个题最显眼的地方是10^9的前缀和和已知因子和的结果了,显然需要杜教筛。。

按照杜教筛的套路,我们设结果为F(n),那么

F(n)\\=\sum_{i=1}^{n}f(i)=\sum_{i=1}^{n}(i^2-3i+2-\sum_{d|n}^{d<n}f(d))\\ =\sum_{i=1}^{n}(i^2-3i+2)-\sum_{i=2}^{n}\sum_{d=1}^{\left \lfloor \frac{n}{i} \right \rfloor}f(d)\\=n(n-1)(n-2)/3-\sum_{i=1}^{n}F(\left \lfloor \frac{n}{i} \right \rfloor)

如果直接算空间和时间都承受不住。。需要预处理。。然后又发现一个大麻烦。。

首先可以发现无论是这个函数还是其和函数都不满足积性性质(f(1)!=1),所以需要转换思路。。。

运用莫比乌斯反演可以得到

f(n)=\sum_{d|n}(d^2-3d+2)\mu(\frac{n}{d}) =\sum_{d|n}d^2\mu(\frac{n}{d})-3\sum_{d|n}d\mu(\frac{n}{d})+2\sum_{d|n}\mu(\frac{n}{d})

然后发现f(n)就是三个积性函数的和。。而其中第二项其实就是欧拉函数 (推了半天才发现),第三项其实就是元函数e。。

然后就只剩下第一项了,看来只能用普通积性函数的分析方法分析一波。。令其为g(n),那么f(n)=g(n)-3φ(n)+2e(n)

g(p^k)=\sum_{i=1}^{k}p^{2i}\mu(p^{k-i})=p^{2k}-p^{2(k-1)}=(p^2-1)p^{2(k-1)}

然后就可以线性筛g(n)了,和φ(n)挺类似的其实。。

然后题目又提示了超过10^6的数据不超过5个,所以干脆直接预处理到10^6,也刚好能形成n^{2/3}的复杂度。。

预处理完上杜教筛,解决

 

 

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<(x))
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid ((x+y)/2) 
#define NM 1000005
#define nm 10005
#define N 1000005
#define M(x,y) x=max(x,y)
const double pi=acos(-1);
const int inf=1e9+7;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
  


int m,prime[NM],tot,phi[NM];
ll _x,f[NM],inv[10],g[NM];

void init(){
    bool v[NM];
    mem(v);
    m=1e6;inv[1]=1;phi[1]=g[1]=1;
    inc(i,2,3)inv[i]=inv[inf%i]*(inf-inf/i)%inf;
    inc(i,2,m){
	if(!v[i])prime[++tot]=i,phi[i]=i-1,g[i]=((ll)i*i-1)%inf;
	inc(j,1,tot){
	    if(i*prime[j]>m)break;
	    v[i*prime[j]]++;
	    if(i%prime[j]==0){
		phi[i*prime[j]]=phi[i]*prime[j];
		g[i*prime[j]]=g[i]*prime[j]%inf*prime[j]%inf;
		break;
	    }
	    phi[i*prime[j]]=phi[i]*(prime[j]-1);
	    g[i*prime[j]]=g[i]*((ll)prime[j]*prime[j]-1)%inf;
	}
	f[i]=g[i]-3*phi[i];f[i]=(f[i-1]+f[i]+inf)%inf;
    }
}

ll v[1005];
ll solve(ll n){
    if(n<=m)return f[n];
    int t=_x/n;
    if(v[t])return v[t];
    v[t]=(ll)n*(n-1)%inf*(n-2)%inf*inv[3]%inf;
    for(ll i=2,j;i<=n;i=j+1){
	j=n/(n/i);
	v[t]=(v[t]-(j-i+1)*solve(n/i)%inf+inf)%inf;
    }
    return v[t];
}


int main(){
    init();
    int _=read();while(_--){
	_x=read();if(_x>m)mem(v);
	printf("%lld\n",solve(_x));
    }
    return 0;
}

 

 

 

function

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 954    Accepted Submission(s): 367


 

Problem Description

There is a function f(x),which is defined on the natural numbers set N,satisfies the following eqaution

N2−3N+2=∑d|Nf(d)

calulate ∑Ni=1f(i)  mod 109+7.

 

 

Input

the first line contains a positive integer T,means the number of the test cases.

next T lines there is a number N


T≤500,N≤109

only 5 test cases has N>106.

 

 

Output

Tlines,each line contains a number,means the answer to the i-th test case.

 

 

Sample Input

 

1 3

 

 

Sample Output

 

2 $1^2-3*1+2=f(1)=0$ $2^2-3*2+2=f(2)+f(1)=0->f(2)=0$ $3^2-3*3+2=f(3)+f(1)=2->f(3)=2$ $f(1)+f(2)+f(3)=2$

 

 

Source

BestCoder Round #68 (div.2)

 

 

Recommend

hujie   |   We have carefully selected several similar problems for you:  6447 6446 6445 6444 6443 

 

 

Statistic | Submit | Discuss | Note

Home | Top 
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值