[hdu5608]function 数论变换入门 杜教筛

版权声明:myjs999原创文章<br> https://blog.csdn.net/myjs999/article/details/78896973

杜教筛第一题!
但是我根本就没用杜教筛,我连杜教筛是什么都不知道。
但是首先我们知道一个结论:

i=1nd|ifd=i=1nd=1nifd

左右的i意义不同。右边的i可以当做是枚举倍数,即左边id的几倍。那么容易发现左右是相等的。我把这个变形叫做收缩变换。(更多变换见我另一篇博客)
收缩变换的意义在于把枚举因数转换为枚举前缀。
然后我们看到d|nfd=n23n+2,套一个前缀和就变成了
i=1nd|ifd=i=1ni23i+2

右边的你肯定会吧,平方和一下就变成多项式了。
左边的用一个收缩变换,变成:
i=1nd=1nifd=n33n2+2n3

“套一个前缀和”这个技巧叫做构造收缩变换,在求前缀时非常有用。
Sf的前缀和,把上面式子用S表示就有
i=1nSni=n33n2+2n3

i=1的时候就能算出Sn了。于是我们把i=1的情况分开,再移一下项,就得到了最后的式子。注意右边i从2开始。
Sn=n33n2+2n3i=2nSnk

然后就套用一般的做法,先O(n2/3)预处理前n2/3S,后面就递归求,用一个map来实现记忆化。
实现再稍微讲一下。你可以在草稿纸上写出一些n,然后看它是由哪些f得到的,最后预处理一般都是先赋成一个大的值,再枚举因数(事实上是枚举底数和枚举倍数)减去多余的值。
递归的部分,要用n的时间分成若干块来统计答案。具体参考代码。

#include<cstdio>
#include<map>
using namespace std;
const long long _mod = 1000000007;
map<int,int> m;
long long ans[1111111]; //前n^(2/3)的S 
long long read() {
    long long a = 0, c = getchar(), w = 1;
    for(; c < '0' || c > '9'; c = getchar()) if(c == '-') w = -1;
    for(; c >= '0' && c <= '9'; c = getchar()) a = a * 10 + c - '0';
    return a * w;
}

long long exgcd(long long a, long long b, long long& d, long long& x, long long& y) {
    if(!b) {d = a; x = 1; y = 0;}
    else {exgcd(b, a%b, d, y, x); y -= x*(a/b);}
}
long long inv(long long a, long long n) {
    long long d, x, y;
    exgcd(a, n, d, x, y);
    return (x+n)%n;
}

long long calc(long long x) {
    if(x <= 1111111) return ans[x];
    if(m[x] > 0) return m[x]; //记忆化 
    long long ans = x * x % _mod * x % _mod * inv(3, _mod) % _mod - x * x % _mod;
    ans %= _mod;
    if(ans < 0) ans += _mod;
    ans += x * 2 % _mod * inv(3, _mod) % _mod;
    ans %= _mod;
    int bl; //bl是右端点
    for(int i = 2; i <= x; i = bl + 1) {
        bl = x / (x/i); //先更新bl
        ans -= (bl-i+1) * calc(x/i) % _mod; //i是左端点
        ans %= _mod;
        if(ans < 0) ans += _mod;
    }
    m[x] = ans;
    return ans;
}

int main() {       
    for(int i=1;i<1111111;i++)ans[i]=1ll*(i-1)*(i-2)%_mod;
    for(int i=1;i<1111111;i++)
        for(int j=2*i;j<1111111;j+=i) //枚举倍数减掉多余的 
        {
            ans[j]-=ans[i];       
            if(ans[j]<0)ans[j]+=_mod;
        }
    for(int i=2;i<1111111;i++)
    {
        ans[i]+=ans[i-1];
        if(ans[i]>=_mod)ans[i]-=_mod;
    }
    int T = read();
    while(T--) {
        long long n = read();
        printf("%lld\n", calc(n));
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页