其实这个知识点并不是很难。。只是觉得并不会这么极限卡log就没去管他。。直到今天差点被卡TAT
稍微推导一下
设d[i][j]为前i种物品体积为j的最大价值
此时
令,,有
此时即
然后考虑到枚举k的时候k一定为整数,所以直接就行。。然后发现这就是划窗。。
所以枚举q后枚举k,然后直接单调队列维护最值即可。。
然后时间复杂度降成了O(nm)而且好像并不比二进制压缩复杂多少。。所以以后就写单调队列了。。
/**
* ┏┓ ┏┓
* ┏┛┗━━━━━━━┛┗━━━┓
* ┃ ┃
* ┃ ━ ┃
* ┃ > < ┃
* ┃ ┃
* ┃... ⌒ ... ┃
* ┃ ┃
* ┗━┓ ┏━┛
* ┃ ┃ Code is far away from bug with the animal protecting
* ┃ ┃ 神兽保佑,代码无bug
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┗━━━┓
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#include<stdlib.h>
#include<assert.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,1,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 7005
#define nm 7005
#define pi 1.1415926535897931
const int inf=1e9+7;
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=0;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}
int n,m,c[NM],w[NM],b[NM],qh,qt,q[NM];
int d[NM],f[NM];
int main(){
n=read();m=read();
inc(i,1,n)c[i]=read(),w[i]=read(),b[i]=read();
inc(i,1,n){
inc(j,0,c[i]-1){
qh=1;qt=0;
for(int k=0;j+k*c[i]<=m;k++){
while(qh<=qt&&q[qh]<k-b[i])qh++;
while(qh<=qt&&f[j+q[qt]*c[i]]-q[qt]*w[i]<=f[j+k*c[i]]-k*w[i])qt--;
q[++qt]=k;
d[j+k*c[i]]=f[j+q[qh]*c[i]]-q[qh]*w[i]+k*w[i];
}
}
inc(i,1,m)f[i]=d[i];
}
return 0*printf("%d\n",d[m]);
}
5429 多重背包
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题目描述 Description
你有一个容量为M的背包,和N种物品。
每种物品都有三个属性,vi,wi,与ci,分别表示这种物品的体积、价值和件数。
你的任务是,从这些所给物品中,选出若干件,其体积之和不能超过背包容量,并且使所选物品的权值的和最大。
输入描述 Input Description
第一行两个整数N,M
接下来N行每行三个数vi,wi,ci描述第i件物品的属性
输出描述 Output Description
最大的权值和
样例输入 Sample Input
2 8
2 100 4
4 100 2
样例输出 Sample Output
400
数据范围及提示 Data Size & Hint
对于20%的数据,ci=1
对于60%的数据,N,M<=500,ci<=100
对于90%的数据,N,M<=3000
对于100%的数据,N,M<=7000,ci<=5000,保证答案不超过2147483647