这个是求关键点到其他关键点的最小距离。。感觉比较经典??然而做法比较沙雕。。
很容易想到从超级大源点向关键点连边然后跑dij,可是会出现就是关键点的最小距离会连他自己算在内,只要解决这个问题这题就完了。。
因此在求最短路的时候可以再增加一个标号,即这个最短路是从哪个关键点得到的。。然后对同个关键点来的直接按照普通最短路做就可以。。然而我们只需要排除标号是自己本身的情况,因此在几个标号的最短路中,我们只需要找最短和次短的即可。。
所以在跑dij转移的时候存二元组,然后标号相同的合并,不同的取最小,然后做个小分类讨论就行了。。
感觉很傻逼。。为什么不来做这道题。。。
/**
* ┏┓ ┏┓
* ┏┛┗━━━━━━━┛┗━━━┓
* ┃ ┃
* ┃ ━ ┃
* ┃ > < ┃
* ┃ ┃
* ┃... ⌒ ... ┃
* ┃ ┃
* ┗━┓ ┏━┛
* ┃ ┃ Code is far away from bug with the animal protecting
* ┃ ┃ 神兽保佑,代码无bug
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┃
* ┃ ┗━━━┓
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#include<stdlib.h>
#include<assert.h>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 200005
#define nm 400005
#define pi 3.1415926535897931
const ll inf=1e9+7;
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar() ;
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}
struct edge{int t,v;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y,int v){o->t=y;o->v=v;o->next=h[x];h[x]=o++;}
int n,m,p,_x,_y,_t,a[NM];
struct tmp{
int x;ll d;
bool operator<(const tmp&o)const{return d>o.d;}
}d[NM][3];
priority_queue<tmp>q;
void dij(){
while(!q.empty()){
int t=q.top().x;q.pop();
inc(k,1,2)if(d[t][k].x)
link(t){
if(d[j->t][1].x==d[t][k].x){
if(d[j->t][1].d>d[t][k].d+j->v)
q.push(tmp{j->t,d[j->t][1].d=d[t][k].d+j->v});
}else if(d[j->t][2].x==d[t][k].x){
if(d[j->t][2].d>d[t][k].d+j->v){
q.push(tmp{j->t,d[j->t][2].d=d[t][k].d+j->v});
if(d[j->t][1].d>d[j->t][2].d)swap(d[j->t][1],d[j->t][2]);
}
}else if(!d[j->t][1].x||d[j->t][1].d>d[t][k].d+j->v){
d[j->t][2]=d[j->t][1];d[j->t][1]=d[t][k];
q.push(tmp{j->t,d[j->t][1].d+=j->v});
}else if(!d[j->t][2].x||d[j->t][2].d>d[t][k].d+j->v){
d[j->t][2]=d[t][k];
q.push(tmp{j->t,d[j->t][2].d+=j->v});
}
}
}
}
int main(){
n=read();m=read();p=read();
inc(i,1,p){
a[i]=read();d[a[i]][1]=tmp{a[i],0};q.push(tmp{a[i],0});
}
inc(i,1,m){_x=read();_y=read();_t=read();add(_x,_y,_t);add(_y,_x,_t);}
dij();
//inc(i,1,n){printf("%d %d::%d %d\n",d[i][1].x,d[i][1].d,d[i][2].x,d[i][2].d);}
inc(i,1,p)if(d[a[i]][1].x!=a[i])printf("%lld ",d[a[i]][2].d);else printf("%lld ",d[a[i]][2].d);
return 0*printf("\n");
}
链接:https://www.nowcoder.com/acm/contest/203/I
来源:牛客网
Metropolis
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 524288K,其他语言1048576K
64bit IO Format: %lld
题目描述
魔方国有n座城市,编号为。城市之间通过n-1条无向道路连接,形成一个树形结构。
在若干年之后,其中p座城市发展成了大都会,道路的数量也增加到了m条。
大都会之间经常有贸易往来,因此,对于每座大都会,请你求出它到离它最近的其它大都会的距离。
输入描述:
第一行三个整数n,m,p (1 ≤ n,m ≤ 2*105,2 ≤ p ≤ n),第二行p个整数表示大都会的编号 (1≤ xi≤ n)。接下来m行每行三个整数ai,bi,li表示一条连接ai和bi,长度为li的道路 (1 ≤ ai,bi ≤ n,1 ≤ li ≤ 109)。 保证图是连通的。
输出描述:
输出一行p个整数,第i个整数表示xi的答案。
示例1
输入
复制
5 6 3 2 4 5 1 2 4 1 3 1 1 4 1 1 5 4 2 3 1 3 4 3
输出
复制
3 3 5