hiho1456(pick定理+杜教筛)

EC热身赛的C。。感觉还是有补的价值。。

首先有个结论比较难找。。(等窝找出来已经不到5分钟了。。

结论就是一条不经过交点的斜线对应2个三角形。。(这个是队友打表看出来的。。orz这都能看出来的么)

证明的话就是用pick定理可以得知合法三角形的面积一定为0.5,那么一个长宽互质的包围盒就可以对应4个三角形(2个斜边对应4个)

那么就求斜边个数就可以了。。答案如下

\sum_{i=1}^{n}\sum_{j=1}^m\sum_{a=1}^{i-1}\sum_{b=1}^{j-1}[(a,b)=1]\\= \sum_{i=1}^{n-1}\sum_{j=1}^{m-1}\sum_{a=1}^{i}\sum_{b=1}^{j}\sum_{d|(a,b)}\mu(d)\\= \sum_{a=1}^{n-1}(n-a)\sum_{b=1}^{m-1}(m-b)\sum_{d|a\&\&d|b}\mu(d)\\= \sum_{d}\mu(d)\sum_{i=1}^{\left \lfloor \frac{n-1}{d}\right \rfloor}(n-id)\sum_{j=1}^{\left \lfloor \frac{m-1}{d}\right \rfloor}(m-jd)\\= \sum_{d}\mu(d)nm\left \lfloor \frac{n-1}{d}\right \rfloor\left \lfloor \frac{m-1}{d}\right \rfloor \\+\sum_{d}d\mu(d)(\frac{\left \lfloor \frac{n-1}{d}\right \rfloor(\left \lfloor \frac{n-1}{d}\right \rfloor+1)}{2}\left \lfloor \frac{m-1}{d}\right \rfloor m+\frac{\left \lfloor \frac{m-1}{d}\right \rfloor(\left \lfloor \frac{m-1}{d}\right \rfloor+1)}{2}\left \lfloor \frac{n-1}{d}\right \rfloor n)\\+ \sum_{d}d^2\mu(d)\frac{\left \lfloor \frac{n-1}{d}\right \rfloor(\left \lfloor \frac{n-1}{d}\right \rfloor+1)\left \lfloor \frac{m-1}{d}\right \rfloor(\left \lfloor \frac{m-1}{d}\right \rfloor+1)}{4}

然后就可以分块去算了。。然后需要求\mu(d)d\mu(d)d^2\mu(d)的前缀和。。5e9要用杜教筛。。

\mu(d)的算过。。然后其他2个以为直接代就行了。。可是他们的卷积没法求啊。。然后演了一波。 。

所以还是推导一下

F(n)\\=\sum_{i=1}^{n}i^2\mu(i)\\= \sum_{i=1}^{n}i^2([n=1]-\sum_{d|i}^{d<i}\mu(d))\\= 1-\sum_{i=1}^{n}\sum_{d|i}^{d<i}i^2\mu(d)\\= 1-\sum_{i=2}^{n}\sum_{d=1}^{\left \lfloor \frac{n}{i} \right \rfloor}(id)^2\mu(d)\\= 1-\sum_{i=2}^{n}i^2F(\left \lfloor \frac{n}{i} \right \rfloor)

然后直接分块套杜教筛就可以了。。复杂度emmmm不会算。。感觉不会太高。。

然后发现O(1)hash其实优势很小。。而且如果多次做杜教筛可能会更慢。。因为每次杜教筛map存的元素也在几百左右。。所以多个log影响其实并不很大。。可是这题比较伤的是O(1)hash每次做完完整一次杜教筛就要清空一次,如果有重复就比map要慢太多了。。

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */ 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<set>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 10000005
#define nm 505
#define pi 3.1415926535897931
const int inf=998244353;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 
 




struct tmp{ll a,b,c;};
ll n,m,_n,_m;
ll f[NM],g[NM],h[NM],ans;
int cnt,prime[NM],tot;
bool v[NM];
map<ll,bool>vf;
map<ll,tmp>_f;
const ll inv2=499122177;
const ll inv6=166374059;

void init(){
    f[1]=g[1]=h[1]=1;cnt=1e7;
    inc(i,2,cnt){
	if(!v[i])prime[++tot]=i,f[i]=-1,g[i]=-i,h[i]=g[i]*i%inf;
	inc(j,1,tot){
	    if(i*prime[j]>cnt)break;
	    v[i*prime[j]]++;
	    int t=i*prime[j];
	    if(i%prime[j]==0){
		f[t]=g[t]=h[t]=0;
		break;
	    }
	    f[t]=-f[i];g[t]=-g[i]*prime[j];h[t]=h[i]*h[prime[j]]%inf;
	}
    }
    inc(i,2,cnt)f[i]+=f[i-1],g[i]+=g[i-1],h[i]+=h[i-1],g[i]%=inf,h[i]%=inf;
}


inline ll fun(ll n){n%=inf;return n*(n+1)%inf*(2*n+1)%inf*inv6%inf;}

tmp F(ll n){
    if(n<=cnt)return tmp{f[n],g[n],h[n]};
    if(vf[n])return _f[n];
    vf[n]++;
    tmp s=tmp{1,1,1};
    for(ll i=2,j;i<=n;i=j+1){
	j=n/(n/i);
	tmp t=F(n/i);
	s.a-=t.a*((j-i+1)%inf)%inf;s.a%=inf;
	s.b-=(j+i)%inf*((j-i+1)%inf)%inf*inv2%inf*t.b%inf;s.b%=inf;
	s.c-=(fun(j)-fun(i-1))*t.c%inf;s.c%=inf;
    }
    return _f[n]=s;
}

int main(){
    init();
    n=read();m=read();
    if(n>m)swap(n,m);
    _n=n;_m=m;
    n%=inf;m%=inf;_n--;_m--;
    for(ll i=1,j;i<=_n;i=j+1){
	ll x=_n/i,y=_m/i;
	j=min(_n/x,_m/y);
	tmp s1,s2;
	s1=F(j);
	s2=F(i-1);
	ans+=(s1.a-s2.a+inf)*n%inf*m%inf*x%inf*y%inf
	    -(s1.b-s2.b+inf)*(x%inf*(x+1)%inf*inv2%inf*m%inf*y%inf+y%inf*(y+1)%inf*inv2%inf*n%inf*x%inf)%inf
	    +(s1.c-s2.c+inf)*(x%inf*(x+1)%inf*inv2%inf*y%inf*(y+1)%inf*inv2%inf)%inf;
	ans%=inf;
    }
    ans+=inf;ans<<=2;ans%=inf;
    return 0*printf("%lld\n",ans);
}

 

 

 

#1456 : Rikka with Lattice

时间限制:50000ms

单点时限:5000ms

内存限制:256MB

描述

众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习,其中有一道是这样的:

勇太有一个 n × m 的点阵,他想要从这 n × m 个点中选出三个点 {A, B, C},满足:

1. 三角形 ABC 面积不为0且其内部不存在整点。

2. 边 AB, BC, CA 上不存在除了端点以外的整点。

现在勇太想要知道有多少种不同的选取方案满足条件。

当然,这个问题对于萌萌哒六花来说实在是太难了,你可以帮帮她吗?

注意 {A, B, C} 与 {B, A, C} 视为同一种方案。

输入

第一行输入两个正整数 n, m (n, m ≤ 5 × 109)。

输出

输出一个整数表示答案,答案可能很大请对998244353取模后输出。

样例解释

灰色三角形和蓝色三角形满足条件,而绿色三角形不满足条件。

额外样例

Sample Input 2

Sample Output 2
100 10060758188

样例输入

3 3

样例输出

32

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值