bzoj4006(斯坦纳树+状压DP)

参考链接:https://www.cnblogs.com/ECJTUACM-873284962/p/7643445.html#autoid-0-1-0

资料比较少,主要看上面学的(博客挺漂亮的

斯坦纳树的定义是给定m个关键点,使得这些关键点相互联通的最小权值的树(自己写的

MST是斯坦纳树的特殊情况,只要把关键点定义成所有点就可以了。。

求解斯坦纳树是NP问题,所以要关键点的个数要少(一般m<10),然后才可以状压

令d[i][j]为覆盖了i点集,j为根的树的最小权值

那么状态转移有两重:

第一重:把两个子状态合并成一个状态

d[i][j]=\max\limits_{t\subseteq i} (d[t][j]+d[i-t][j])

复杂度O(V3^m)

枚举子状态的时候可以参考挑战的位运算枚举方法

第二重:在同一状态中进行转移(就是SPFA

d[state][j]=max(d[state]][j],d[state][i]+e[i][j])

复杂度O(E2^m)

然后就把斯坦纳树求解出来了。。

 

对这题,他要同一频率的点联通,那么再对频率做一个状压DP就可以了,每个状态的初始值从斯坦纳树里面抽取出来,然后做个合并就可以了。。

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */ 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<set>
#include<bitset>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 1025
#define nm 6005
#define pi 3.1415926535897931
const int inf=998244353;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 
 



struct edge{int t,v;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y,int v){o->t=y;o->v=v;o->next=h[x];h[x]=o++;}
int n,m,p,tot,d[NM][NM],_x,_y,_t,g[NM],b[NM];
pair<int,int>c[NM];
queue<int>q;
bool v[NM];


void spfa(int k){
    while(!q.empty()){
	int t=q.front();q.pop();v[t]=false;
	link(t)if(d[k][j->t]>d[k][t]+j->v){
	    d[k][j->t]=d[k][t]+j->v;
	    if(!v[j->t])v[j->t]++,q.push(j->t);
	}
    }
}

int main(){
    freopen("data.in","r",stdin);
    n=read();m=read();p=read();tot=succ(p)-1;
    inc(i,1,m){_x=read();_y=read();_t=read();add(_x,_y,_t);add(_y,_x,_t);}
    inc(i,1,p)c[i].first=read(),c[i].second=read();
    sort(c+1,c+1+p);
    inc(i,1,p)if(c[i].first-c[i-1].first>1){
	int t=c[i].first,j=i;
	while(c[j].first==t)c[j++].first=c[i-1].first+1;
	i=j-1;
    }
    inc(i,1,tot)inc(j,1,n)d[i][j]=inf;
    inc(i,1,p)d[succ(i-1)][c[i].second]=0;
    inc(i,1,tot){
	mem(v);
	inc(j,1,n){
	    for(int k=i&(i-1);k;k=(k-1)&i)
		d[i][j]=min(d[i][j],d[k][j]+d[k^i][j]);
	    if(d[i][j]<inf)q.push(j),v[j]++;
	}
	spfa(i);
    }
    inc(i,1,p){
	int j=i;
	while(c[j].first==c[i+1].first)i++;
	b[c[j].first]=succ(i)-succ(j-1);
    }
    p=c[p].first;tot=succ(p)-1;
    inc(i,1,tot){
	int t=0;
	g[i]=inf;
	inc(j,1,p)if(succ(j-1)&i)t^=b[j];
	inc(j,1,n)g[i]=min(g[i],d[t][j]);
    }
    inc(i,1,tot)
	for(int j=i&(i-1);j;j=(j-1)&i)
	    g[i]=min(g[i],g[j]+g[j^i]);
    return 0*printf("%d\n",g[tot]);
}

 

 

4006: [JLOI2015]管道连接

Time Limit: 30 Sec  Memory Limit: 128 MB
Submit: 1291  Solved: 717
[Submit][Status][Discuss]

Description

小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。

该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情

报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。

如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就

建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均

与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。

现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭

面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。

Input

第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数

量。接下来 m 行,每行包含三个整数 ui;vi;wi,表示可以建立的通道。最后有 p 行,每行包含

两个整数 ci;di,表示重要情报站的频道和情报站的编号。

Output

输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。

Sample Input

5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4

Sample Output

4

HINT

 

选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。

 

对于 100% 的数据,0 <ci <= p <= 10; 0 <ui;vi;di <= n <= 1000; 0 <= m <= 3000; 0 <= wi <=

 

20000。

 

 

Source

 

[Submit][Status][Discuss]

发布了316 篇原创文章 · 获赞 23 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览