HDU 1166 敌兵布阵 (分块)

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。 
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的. 

Input

第一行一个整数T,表示有T组数据。 
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。 
接下来每行有一条命令,命令有4种形式: 
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30) 
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30); 
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数; 
(4)End 表示结束,这条命令在每组数据最后出现; 
每组数据最多有40000条命令 

Output

对第i组数据,首先输出“Case i:”和回车, 
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。 

Sample Input

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End 

Sample Output

Case 1:
6
33
59

区间操作入门题  线段树树状数组均可解

这里给出分块的写法

#include<stdio.h>
#include<string.h>
#include<math.h>
const int N=1e5+5;

int l[N],r[N],qu[N],su[N];
int a[N],n,k,num;

void build()
{
    memset(l,0,sizeof(l));
    memset(r,0,sizeof(r));
    memset(qu,0,sizeof(qu));
    memset(su,0,sizeof(su));
    k=sqrt((double)n);
    num=n/k;
    if(n%k) num++;
    for(int i=1; i<=num; i++)
    {
        l[i]=(i-1)*k+1;
        r[i]=i*k;
    }
    r[num]=n;
    for(int i=1; i<=n; i++)
    {
        qu[i]=(i-1)/k+1;
        su[qu[i]]+=a[i];
    }
}

void add(int x,int y)
{
    a[x]+=y;
    su[qu[x]]+=y;
}

void sub(int x,int y)
{
    a[x]-=y;
    su[qu[x]]-=y;
}

int query(int x,int y)
{
    int sum=0;
    int ll=qu[x];
    int rr=qu[y];
    if(ll==rr)
    {
        for(int i=x; i<=y; i++)
        {
            sum+=a[i];
        }
        return sum;
    }
    for(int i=x; i<=r[ll]; i++)
    {
        sum+=a[i];
    }
    for(int i=ll+1; i<rr; i++)
    {
        sum+=su[i];
    }
    for(int i=l[rr]; i<=y; i++)
    {
        sum+=a[i];
    }
    return sum;
}

int main()
{
    int T,x,y,u=0;
    char b[10];
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1; i<=n; i++) scanf("%d",&a[i]);
        build();
        printf("Case %d:\n",++u);
        while(~scanf("%s",b))
        {
            if(b[0]=='E') break;
            scanf("%d%d",&x,&y);
            if(b[0]=='A')add(x,y);
            if(b[0]=='S')sub(x,y);
            if(b[0]=='Q')
            {
                printf("%d\n",query(x,y));
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值