米勒-拉宾素性检测算法

米勒-拉宾素性检测就是目前应用比较广的一种随机化素性检测算法。 

它是基于下面两个定理:

  • (费马小定理)如果 p 为素数,且 a 无法被 p 整除,则对于所有大于0小于 p 的整数 a,有
    ap11modp
  • 如果1在模n下有非平凡平方根,即存在x ≠ ±1 满足
    x21modn
    则n必为合数。

上面两个定理的具体证明就不给出了。
在素性检测中,实际上我们利用的是费马小定理的逆命题,也就是满足该等式的整数都是素数。费马小定理的逆命题是伪命题,但它在大多数情况下是成立的。当a = 2时,前十亿个正整数中能满足该等式的合数只有5597个(这些数被称为伪素数)。
所以如果我们可以通过验证等式 an11(modn) 是否成立去检验一个数是否为素数。对于10亿以内的正整数,这样做出错的概率只有0.011%. 而通过多次改变a的值来进行检验,还可以进一步降低出错的概率。
当然,这个方法还是有不少漏网之鱼的。为了提高准确率,我们就需要用到上面的第二条定理了。
我们先将 p-1 表示为 u*2^t 的形式。那么,a^(p-1) mod n 就可以表示为: (au)2tmodn
首先,我们计算 x0=aumodn ,然后使用反复平方法计算
x1x20modn
x2x21modn

xix2i1modn

xtx2t1modn

很显然, xi1 xi 在模n下的平方根,那么,根据定理2,在这一计算过程中,如果有任意一个 xi1modn xi1±1modn ,则n必为合数。

下面是C++代码实现(根据《算法导论》中的伪代码编写):

bool witness(int a, int n)
{
	unsigned int x = n - 1, t = 0;

	for(unsigned int i = 1; i <<= 1, t++) //计算t的值
		if((x | i) == x)
			break;
		
	unsigned int x0 = mod_exp(a, x >> t, n); //u = x >> t,x0 = a^u mod n
	for(int i = 0; i < t; i++)
	{
		x = x0 * x0 % n;
		if(x == 1 && x0 != 1 && x0 != n - 1) //x0是1的非平凡平方根,则n必为合数
			return true;

		x0 = x;
	}
	if(x != 1)  //不符合费马小定理,n必为合数
		return true;

	return false;
}

bool is_prime(int n, int s) //s为检测的次数,s越大准确度越高,但也越耗时间
{
	srand(time_t(time(NULL)));
	for(int i = 0; i < s; i++)
	{
		int a = rand() % (n - 2) + 2;//实际上随机生成的a是不允许重复的,这样写只是为了简便

		if(witness(a, n))  //如果n为合数,直接返回检测结果
			return false;
	}
	return true;
}


  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
费马素性检验算法米勒-拉宾素性检验算法和Solovay-Stassen素性检验算法都是判断一个数是否为素数的经典算法,它们的区别和联系如下: 1. 费马素性检验算法: 费马素性检验算法是最早提出的素性检验算法之一,它基于费马小定理:如果p是质数,a是不被p整除的任意整数,则a^(p-1) ≡ 1 (mod p)。因此,如果对于给定的a和p,a^(p-1) mod p = 1,则p可能是质数,否则p一定是合数。 2. 米勒-拉宾素性检验算法米勒-拉宾素性检验算法是一种基于费马小定理的改进算法,它随机选取若干个数a,对每个a进行费马小定理的检验,如果某个a使得a^(p-1) mod p ≠ 1且a^((p-1)/2) mod p ≠ -1,则p一定是合数,否则p可能是质数。米勒-拉宾素性检验算法的可靠性与选取的a有关,但是经过多次检验,误判的概率可以降低到极小。 3. Solovay-Stassen素性检验算法: Solovay-Stassen素性检验算法是一种基于欧拉准则的改进算法,它首先利用欧拉准则判断给定的数n是否为合数,如果n是合数,则返回false;如果n是质数,则随机选取若干个数a,并计算它们的雅可比符号,如果所有的雅可比符号都满足a^((n-1)/2) ≡ Jacobi(a, n) (mod n),则n可能是质数,否则n一定是合数。 这三种算法都是基于数学定理来判断一个数是否为素数。费马素性检验算法最简单,但误判率较高,适合于小范围的素数判断;米勒-拉宾素性检验算法相对来说误判率较低,适合于大范围的素数判断;Solovay-Stassen素性检验算法也是误判率较低的算法,但比米勒-拉宾素性检验算法更加复杂。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值