/*传说中的随机算法。
效率极高。
可以对一个2^63的素数进行判断。
可以分解比较大的数的因子。
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MAX = 1000;
const ll MAXN = 1000;
#define INF 0x3f3f3f3f
#define forn(i, n) for (ll i = 0; i < n; i++)
#define form(i, n) for (ll i = 1; i <= n; i++)
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin);
#define FOUT freopen("out.txt", "w", stdout);
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S = 20; //随机算法判定次数,S越大,判错概率越小
//计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a, long long b, long long c)
{
a %= c;
b %= c;
long long ret = 0;
while (b)
{
if (b & 1)
{
ret += a;
ret %= c;
}
a <<= 1;
if (a >= c)
a %= c;
b >>= 1;
}
return ret;
}
//计算 x^n %c
long long pow_mod(long long x, long long n, long long mod) //x^n%c
{
if (n == 1)
return x % mod;
x %= mod;
long long tmp = x;
long long ret = 1;
while (n)
{
if (n & 1)
ret = mult_mod(ret, tmp, mod);
tmp = mult_mod(tmp, tmp, mod);
n >>= 1;
}
return ret;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a, long long n, long long x, long long t)
{
long long ret = pow_mod(a, x, n);
long long last = ret;
for (int i = 1; i <= t; i++)
{
ret = mult_mod(ret, ret, n);
if (ret == 1 && last != 1 && last != n - 1)
return true; //合数
last = ret;
}
if (ret != 1)
return true;
return false;
}
// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(long long n)
{
if (n < 2)
return false;
if (n == 2)
return true;
if ((n & 1) == 0)
return false; //偶数
long long x = n - 1;
long long t = 0;
while ((x & 1) == 0)
{
x >>= 1;
t++;
}
for (int i = 0; i < S; i++)
{
long long a = rand() % (n - 1) + 1; //rand()需要stdlib.h头文件
if (check(a, n, x, t))
return false; //合数
}
return true;
}
//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100]; //质因数分解结果(刚返回时是无序的)
int tol; //质因数的个数。数组小标从0开始
long long gcd(long long a, long long b)
{
if (a == 0)
return 1; //???????
if (a < 0)
return gcd(-a, b);
while (b)
{
long long t = a % b;
a = b;
b = t;
}
return a;
}
long long Pollard_rho(long long x, long long c)
{
long long i = 1, k = 2;
long long x0 = rand() % x;
long long y = x0;
while (1)
{
i++;
x0 = (mult_mod(x0, x0, x) + c) % x;
long long d = gcd(y - x0, x);
if (d != 1 && d != x)
return d;
if (y == x0)
return x;
if (i == k)
{
y = x0;
k += k;
}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if (Miller_Rabin(n)) //素数
{
factor[tol++] = n;
return;
}
long long p = n;
while (p >= n)
p = Pollard_rho(p, rand() % (n - 1) + 1);
findfac(p);
findfac(n / p);
}
int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
while (cin >> n)
{
tol = 0;
findfac(n);
for (int i = 0; i < tol; i++)
cout << factor[i] << " ";
cout << endl;
if (Miller_Rabin(n))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}