米勒拉宾算法求超大质数及其因数

/*传说中的随机算法。

效率极高。

可以对一个2^63的素数进行判断。

可以分解比较大的数的因子。
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MAX = 1000;
const ll MAXN = 1000;
#define INF 0x3f3f3f3f
#define forn(i, n) for (ll i = 0; i < n; i++)
#define form(i, n) for (ll i = 1; i <= n; i++)
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin);
#define FOUT freopen("out.txt", "w", stdout);

//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S = 20; //随机算法判定次数,S越大,判错概率越小

//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a, long long b, long long c)
{
    a %= c;
    b %= c;
    long long ret = 0;
    while (b)
    {
        if (b & 1)
        {
            ret += a;
            ret %= c;
        }
        a <<= 1;
        if (a >= c)
            a %= c;
        b >>= 1;
    }
    return ret;
}

//计算  x^n %c
long long pow_mod(long long x, long long n, long long mod) //x^n%c
{
    if (n == 1)
        return x % mod;
    x %= mod;
    long long tmp = x;
    long long ret = 1;
    while (n)
    {
        if (n & 1)
            ret = mult_mod(ret, tmp, mod);
        tmp = mult_mod(tmp, tmp, mod);
        n >>= 1;
    }
    return ret;
}

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a, long long n, long long x, long long t)
{
    long long ret = pow_mod(a, x, n);
    long long last = ret;
    for (int i = 1; i <= t; i++)
    {
        ret = mult_mod(ret, ret, n);
        if (ret == 1 && last != 1 && last != n - 1)
            return true; //合数
        last = ret;
    }
    if (ret != 1)
        return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if (n < 2)
        return false;
    if (n == 2)
        return true;
    if ((n & 1) == 0)
        return false; //偶数
    long long x = n - 1;
    long long t = 0;
    while ((x & 1) == 0)
    {
        x >>= 1;
        t++;
    }
    for (int i = 0; i < S; i++)
    {
        long long a = rand() % (n - 1) + 1; //rand()需要stdlib.h头文件
        if (check(a, n, x, t))
            return false; //合数
    }
    return true;
}

//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100]; //质因数分解结果(刚返回时是无序的)
int tol;               //质因数的个数。数组小标从0开始

long long gcd(long long a, long long b)
{
    if (a == 0)
        return 1; //???????
    if (a < 0)
        return gcd(-a, b);
    while (b)
    {
        long long t = a % b;
        a = b;
        b = t;
    }
    return a;
}

long long Pollard_rho(long long x, long long c)
{
    long long i = 1, k = 2;
    long long x0 = rand() % x;
    long long y = x0;
    while (1)
    {
        i++;
        x0 = (mult_mod(x0, x0, x) + c) % x;
        long long d = gcd(y - x0, x);
        if (d != 1 && d != x)
            return d;
        if (y == x0)
            return x;
        if (i == k)
        {
            y = x0;
            k += k;
        }
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if (Miller_Rabin(n)) //素数
    {
        factor[tol++] = n;
        return;
    }
    long long p = n;
    while (p >= n)
        p = Pollard_rho(p, rand() % (n - 1) + 1);
    findfac(p);
    findfac(n / p);
}

int main()
{
    //srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
    long long n;
    while (cin >> n)
    {
        tol = 0;
        findfac(n);
        for (int i = 0; i < tol; i++)
            cout << factor[i] << " ";
        cout << endl;
        if (Miller_Rabin(n))
            cout << "Yes" << endl;
        else
            cout << "No" << endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值