多项式求逆

前置知识

NTT

多项式取模: 多项式模 x n x^{n} xn 表示取多项式的前 n n n

多项式求逆

给定

f ( x ) = a 0 + a 1 x 1 + a 2 x 2 + ⋅ ⋅ ⋅ + a n x n f(x)=a_{0}+a_{1}x^{1}+a_{2}x^{2}+···+a_{n}x^{n} f(x)=a0+a1x1+a2x2++anxn

求出

g ( x ) = b 0 + b 1 x 1 + b 2 x 2 + ⋅ ⋅ ⋅ + b k x k     ( k ≤ n ) g(x)=b_{0}+b_{1}x^{1}+b_{2}x^{2}+···+b_{k}x^{k}\ \ \ (k\le n) g(x)=b0+b1x1+b2x2++bkxk   (kn)

使得

f ( x ) g ( x ) ≡ 1     ( m o d   x n ) f(x)g(x)\equiv 1\ \ \ (mod\ x^{n}) f(x)g(x)1   (mod xn)

做法

n = 1 n=1 n=1 时,显然有 b 0 = i n v ( a 0 ) b_{0}=inv(a_{0}) b0=inv(a0).

n > 1 n>1 n>1 时,假设我们已经知道 m o d   x n 2 mod\ x^{\frac{n}{2}} mod x2n 意义下的逆

f − 1 ( x ) = g ′ ( x ) f^{-1}(x)=g'(x) f1(x)=g(x)

那么有:

f ( x ) g ′ ( x ) ≡ 1     ( m o d   x n 2 ) f(x)g'(x)\equiv 1\ \ \ (mod\ x^{\frac{n}{2}}) f(x)g(x)1   (mod x2n)

且我们知道 :

f ( x ) g ( x ) ≡ 1     ( m o d   x n 2 ) f(x)g(x)\equiv 1\ \ \ (mod\ x^{\frac{n}{2}}) f(x)g(x)1   (mod x2n)

两式相减,能得到 :

f ( x ) ( g ( x ) − g ′ ( x ) ) ≡ 0     ( m o d   x n 2 ) f(x)(g(x)-g'(x))\equiv 0\ \ \ (mod\ x^{\frac{n}{2}}) f(x)(g(x)g(x))0   (mod x2n)

可以同时除去 f ( x ) f(x) f(x) ,那么有:

g ( x ) − g ′ ( x ) ≡ 0     ( m o d   x n 2 ) g(x)-g'(x)\equiv 0\ \ \ (mod\ x^{\frac{n}{2}}) g(x)g(x)0   (mod x2n)

两边平方,则:

g 2 ( x ) − 2 g ( x ) g ′ ( x ) + g ′ 2 ( x ) ≡ 0     ( m o d   x n ) g^2(x)-2g(x)g'(x)+g'^2(x)\equiv 0\ \ \ (mod\ x^n) g2(x)2g(x)g(x)+g2(x)0   (mod xn)

两边同乘 f ( x ) f(x) f(x),消掉 g ( x ) g(x) g(x)

g ( x ) − 2 g ′ ( x ) + f ( x ) g ′ 2 ( x ) ≡ 0     ( m o d   x n ) g(x)-2g'(x)+f(x)g'^2(x)\equiv 0\ \ \ (mod\ x^n) g(x)2g(x)+f(x)g2(x)0   (mod xn)

移一下项,就很好算了:

g ( x ) ≡ 2 g ′ ( x ) − f ( x ) g ′ 2 ( x )     ( m o d   x n ) g(x)\equiv 2g'(x)-f(x)g'^2(x)\ \ \ (mod\ x^n) g(x)2g(x)f(x)g2(x)   (mod xn)

g ( x ) ≡ g ′ ( x ) ∗ ( 2 − f ( x ) g ′ ( x ) )     ( m o d   x n ) g(x)\equiv g'(x)*(2-f(x)g'(x))\ \ \ (mod\ x^n) g(x)g(x)(2f(x)g(x))   (mod xn)

我们可以愉快地通过迭代的方式求出 g ( x ) g(x) g(x).

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 300006
#define LL long long 
using namespace std;

const int G=3;
const int IG=332748118;
const int mod=998244353;

int n,bit,tot,rev[N];
int f[N],g[N],a[N];

inline int mul(int a,int b){return (LL)a*b%mod;}
inline int sub(int a,int b){return a-b<0?a-b+mod:a-b;};
inline int add(int a,int b){return a+b>mod?a+b-mod:a+b;}

inline int qr()
{
	char a=0;int w=1,x=0;
	while(a<'0'||a>'9'){if(a=='-')w=-1;a=getchar();}
	while(a<='9'&&a>='0'){x=(x<<3)+(x<<1)+(a^48);a=getchar();}
	return x*w;
}

inline int poww(int a,int x)
{
	int ans=1;
	while(x)
	{
		if(x&1)
			ans=mul(ans,a);
		a=mul(a,a);
		x>>=1;
	}
	return ans;
}

int exgcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x=1,y=0;
		return a;
	}
	int d=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}

inline int inv(int a)
{
	int x,y;
	exgcd(a,mod,x,y);
	return (x%mod+mod)%mod;
}

inline void init_rev(int len)
{
	bit=0;
	while((1<<bit)<(len<<1))
		bit++;
	tot=1<<bit;
	for(register int i=0;i<tot;i++)
		rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}

inline void NTT(int *a,int tot,int opt)
{
	for(register int i=0;i<tot;i++)
		if(i<rev[i])
			swap(a[i],a[rev[i]]);
	for(register int mid=1;mid<tot;mid<<=1)
	{
		int w1=poww(opt==1?G:IG,(mod-1)/(mid<<1));
		for(register int i=0;i<tot;i+=(mid<<1))
		{
			int wk=1;
			for(register int j=0;j<mid;j++)
			{
				int x=a[i+j];
				int y=mul(wk,a[i+j+mid]);
				a[i+j]=add(x,y);
				a[i+j+mid]=sub(x,y);
				wk=mul(wk,w1);
			}
		}
	}
	if(opt==-1)
	{
		int inv_=inv(tot);
		for(register int i=0;i<tot;i++)
			a[i]=mul(a[i],inv_);
	}
}

void poly_inv(int len,int *a,int *g)
{
	if(len==1)
	{
		g[0]=inv(a[0]);
		return ;
	}
	poly_inv((len+1)>>1,a,g);
	init_rev(len);
	for(register int i=0;i<len;i++)
		f[i]=a[i];
	for(register int i=len;i<tot;i++)
		f[i]=0;
	NTT(f,tot,1);
	NTT(g,tot,1);
	for(register int i=0;i<tot;i++)
		g[i]=mul(g[i],sub(2,mul(g[i],f[i])));
	NTT(g,tot,-1);
	for(register int i=len;i<tot;i++)
		g[i]=0;
}

int main()
{
	n=qr();
	for(register int i=0;i<n;i++)
		a[i]=qr();
	poly_inv(n,a,g);
	for(register int i=0;i<n;i++)
		printf("%d ",g[i]);
	printf("\n");
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要将多项式化成不定积分,可以使用多项式的基本积分公式。根据这个公式,对于任何一个多项式,它的不定积分都可以表示为其各项系数的积分。 例如,对于一个多项式 f(x) = 2x^3 + 3x^2 + 4x + 5,它的不定积分可以表示为: ∫(2x^3 + 3x^2 + 4x + 5)dx = (2/4)x^4 + (3/3)x^3 + (4/2)x^2 + 5x + C 其中,C 为任意常数项。 因此,多项式可以通过使用基本积分公式来化成不定积分。 ### 回答2: 要将多项式转化为不定积分,可以按照以下步骤进行操作: 1. 首先,将多项式按照降幂排列,即从高次到低次的顺序排列各项。 2. 对于每一项,根据幂的规则,可以将其转化为不定积分。具体而言,对于幂函数 $x^n$,其中 $n$ 是一个实数,不定积分为 $\frac{1}{n+1}x^{n+1}+C$,其中 $C$ 是一个常数。例如,$x^3$ 的不定积分为 $\frac{1}{4}x^4+C$。 3. 将每一项的不定积分相加,得到整个多项式的不定积分。注意,由于不定积分是线性的,可以分别对每一项进行不定积分,然后将结果相加。 4. 最后,记得在结果中添加常数项 $C$,表示原函数的不确定性。这是因为不定积分得到的是一个函数族,只有添加常数项才能表示出具体的函数。 总之,将多项式化为不定积分的具体步骤包括:按照降幂排列多项式各项,对每一项应用幂函数的不定积分规则,相加得到整个多项式的不定积分,并在结果中添加常数项。 ### 回答3: 多项式的不定积分是一个常见的求解方法,可以将一个多项式化成它的原函数。要将一个多项式进行不定积分,可以使用多项式的求导逆运算——积分来实现。 首先,将多项式的各项按照次数降序排列。然后,对于每一项,将其指数加1,并且将系数除以新的指数,得到新的项。这个过程相当于将每一项的幂函数求积分。 例如,对于一个多项式f(x) = 3x² + 2x + 1,可以按照次数降序排列为f(x) = 3x² + 2x + 1。对于每一项,将指数加1并且将系数除以新的指数,得到f(x) = x³ + x² + x。这样,多项式f(x)的不定积分就是F(x) = 1/4x⁴ + 1/3x³ + 1/2x² + C,其中C为常数。 总结起来,将每一项的指数加1,并将系数除以新的指数,就可以得到多项式的不定积分。当然,在计算过程中要注意处理常数项,保留常数项的不定积分时需要加上常数C。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值