多项式求逆

本文介绍了如何求解多项式逆,首先讲解了NTT(快速数论变换)和多项式取模的基础知识,然后阐述了当n为1时的特殊情况及n大于1时利用迭代法求解的方法,通过不断迭代计算出多项式模xn意义下的逆。最后提供了算法的实现思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识

NTT

多项式取模: 多项式模 x n x^{n} xn 表示取多项式的前 n n n

多项式求逆

给定

f ( x ) = a 0 + a 1 x 1 + a 2 x 2 + ⋅ ⋅ ⋅ + a n x n f(x)=a_{0}+a_{1}x^{1}+a_{2}x^{2}+···+a_{n}x^{n} f(x)=a0+a1x1+a2x2++anxn

求出

g ( x ) = b 0 + b 1 x 1 + b 2 x 2 + ⋅ ⋅ ⋅ + b k x k     ( k ≤ n ) g(x)=b_{0}+b_{1}x^{1}+b_{2}x^{2}+···+b_{k}x^{k}\ \ \ (k\le n) g(x)=b0+b1x1+b2x2++bkxk   (kn)

使得

f ( x ) g ( x ) ≡ 1     ( m o d   x n ) f(x)g(x)\equiv 1\ \ \ (mod\ x^{n}) f(x)g(x)1   (mod xn)

做法

n = 1 n=1 n=1 时,显然有 b 0 = i n v ( a 0 ) b_{0}=inv(a_{0})

在Java中,多项式通常是指找到一个多项式,使得它们的乘积等于恒等多项式1。这个过程可以视为多项式函数的运算,即解反函数。不过,需要注意的是,并非所有的多项式都有,只有那些非零常数项的多项式才有可能有。对于这样的多项式,我们可以利用除的思想来近似计算。 一个简单的实现方是使用拉格朗日插值构建多项式,但是直接计算多项式在数值上可能会不稳定,因此更常见的是在数学软件库(如Apache Commons Math)中使用专门的算法,例如Bezout's identity(贝祖定理)或者使用多项式长除。 以下是一个基本的示例,展示了如何使用`java.math.BigInteger`类(用于处理大整数)来实现多项式: ```java import java.math.BigInteger; public class PolynomialInversion { public static BigInteger[] inverse(BigInteger[] coefficients) { if (coefficients[0].equals(BigInteger.ZERO)) throw new IllegalArgumentException("Zero polynomial has no inverse."); // 倒序系数数组以便从最高次幂开始 BigInteger[] reversed = reverse(coefficients); // 计算系数的元 BigInteger[] inverses = new BigInteger[reversed.length]; for (int i = 0; i < reversed.length; i++) { inverses[i] = reversed[i].modInverse(reversed[reversed.length - 1]); } return reverse(inverses); // 将结果反转回原始顺序 } private static BigInteger[] reverse(BigInteger[] array) { BigInteger[] reversed = new BigInteger[array.length]; System.arraycopy(array, 0, reversed, reversed.length - 1, reversed.length); return reversed; } } ``` 在这个例子中,`inverse()`方接收一个系数数组(按照降序排列),然后依次计算每个系数的模,最后返回向的系数数组。请注意,这只是一个简化的版本,实际应用中需要考虑更多的边界条件和精度问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值