多项式求逆

本文介绍了如何求解多项式逆,首先讲解了NTT(快速数论变换)和多项式取模的基础知识,然后阐述了当n为1时的特殊情况及n大于1时利用迭代法求解的方法,通过不断迭代计算出多项式模xn意义下的逆。最后提供了算法的实现思路。
摘要由CSDN通过智能技术生成

前置知识

NTT

多项式取模: 多项式模 x n x^{n} xn 表示取多项式的前 n n n

多项式求逆

给定

f ( x ) = a 0 + a 1 x 1 + a 2 x 2 + ⋅ ⋅ ⋅ + a n x n f(x)=a_{0}+a_{1}x^{1}+a_{2}x^{2}+···+a_{n}x^{n} f(x)=a0+a1x1+a2x2++anxn

求出

g ( x ) = b 0 + b 1 x 1 + b 2 x 2 + ⋅ ⋅ ⋅ + b k x k     ( k ≤ n ) g(x)=b_{0}+b_{1}x^{1}+b_{2}x^{2}+···+b_{k}x^{k}\ \ \ (k\le n) g(x)=b0+b1x1+b2x2++bkxk   (kn)

使得

f ( x ) g ( x ) ≡ 1     ( m o d   x n ) f(x)g(x)\equiv 1\ \ \ (mod\ x^{n}) f(x)g(x)1   (mod xn)

做法

n = 1 n=1 n=1 时,显然有 b 0 = i n v ( a 0 ) b_{0}=inv(a_{0})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值