数学
文章平均质量分 69
江北南风
这个作者很懒,什么都没留下…
展开
-
NTT(快速数论变换)
用途: 计算整系数多项式卷积。前置芝士FFT原根作用我们发现,很多多项式系数为整数,而 FFTFFTFFT 引入了毒瘤的虚数,会出现精度误差且运算速度较慢,这时候就需要一个基于整数的的算法来计算多项式的卷积。做法我们先来考虑为什么 FFTFFTFFT 要用到虚数( nnn 次单位根作为点表示法的横坐标)。因为它能优化运算次数(废话)。那是什么让他可以优化运算次数呢?FFT板子#include<cmath>#include<cstdio>#include<原创 2022-10-25 14:34:26 · 207 阅读 · 0 评论 -
莫比乌斯反演
莫比乌斯函数定义: 将 xxx 质因子分解分解 x=p1d1p2d2p3d3⋅⋅⋅pkdkx=p_{1}^{d_{1}}p_{2}^{d_{2}}p_{3}^{d_{3}}···p_{k}^{d_{k}}x=p1d1p2d2p3d3⋅⋅⋅pkdk.μ(x)={0∃ di≥21x=1(−1)k \mu (x)=\left\{\begin{array}{rcl}0 & & \exists \ d_{i}\ge 2\\1 &原创 2021-02-20 14:15:20 · 89 阅读 · 0 评论 -
任意模数FFT(拆系数FFT)
作用求多项式卷积对 ppp 取模的结果,ppp 不一定能写成 2k+12^k+12k+1 的形式。做法菜鸡不会三模数只好拆系数将两个多项式拆开乘就不会乘爆,最后加一下取个模就行了。把多项式 (A 和 B)(A\ 和\ B)(A 和 B) 的系数拆成 ai=Ai>>15 , bi=Ai&32767 ,ci=Bi>>15 , &nbs原创 2021-02-18 17:11:25 · 344 阅读 · 0 评论 -
多项式求逆
前置知识NTT多项式取模: 多项式模 xnx^{n}xn 表示取多项式的前 nnn 位多项式求逆给定f(x)=a0+a1x1+a2x2+⋅⋅⋅+anxnf(x)=a_{0}+a_{1}x^{1}+a_{2}x^{2}+···+a_{n}x^{n}f(x)=a0+a1x1+a2x2+⋅⋅⋅+anxn求出g(x)=b0+b1x1+b2x2+⋅⋅⋅+bkxk (k≤n)g(x)=b_{0}+b_{1}x^{1}+b_{2}x^{2}+···+b_{k}x^{原创 2021-02-18 16:20:12 · 273 阅读 · 0 评论 -
整 数
数学归纳法(非常有用的证明方法)数学归纳原理(弱归纳)一个包含整数 111 的正整数集合如果具有以下性质,即若其包含整数 kkk ,则其也包含整数 k+1k+1k+1,那么这个集合一定是所有正整数的集合。高考要考的。举个栗子,证明:∑i=1ni2=n(n+1)(n+2)6\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(n+2)}{6}i=1∑ni2=6n(n+1)(n+2)将 n=1n=1n=1 代入得 ∑i=11i2=1\sum_{i=1}^{1} i^{2}原创 2021-02-14 19:04:54 · 341 阅读 · 0 评论