【阿里笔试题汇总】2024-04-08-阿里国际春招笔试题(第一套)-三语言题解(CPP/Python/Java)

🍭 大家好这里是KK爱Coding ,一枚热爱算法的程序员

✨ 本系列打算持续跟新阿里近期的春秋招笔试题汇总~

💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导

👏 感谢大家的订阅➕ 和 喜欢💗

📧 KK这边最近正在收集近一年互联网各厂的笔试题汇总,如果有需要的小伙伴可以关注后私信一下 KK领取,会在飞书进行同步的跟新。

01.K小姐的完全平方数

题目描述

K小姐拿到一个正整数 x x x,她希望通过以下两个操作将 x x x 变为完全平方数:

  1. 如果 x x x 是质数,则将其减 1 1 1
  2. 否则,将其除以自己最小的质因数。

请问 K小姐需要操作多少次才能将 x x x 变为完全平方数?

输入格式

输入包含一个正整数 x x x,表示初始的数。

输出格式

输出一个整数,表示 K小姐需要操作的次数。

样例输入

5

样例输出

1

样例输入

20

样例输出

3

数据范围

1 ≤ x ≤ 1 0 9 1 \le x \le 10^9 1x109

题解

本题可以通过模拟 K小姐的操作过程来解决。

首先,我们需要预处理出 1 1 1 1 0 5 10^5 105 范围内的所有质数,可以使用埃氏筛法来实现。对于大于 1 0 5 10^5 105 的数,可以通过遍历 2 2 2 x \sqrt{x} x 的所有数来判断其是否为质数。

接下来,我们从 x x x 开始,不断执行 K小姐的操作,直到 x x x 变为完全平方数为止。在操作过程中,我们需要记录操作的次数。

对于当前的数 x x x,如果它是质数,则将其减 1 1 1,操作次数加 1 1 1。否则,我们找到 x x x 最小的质因数,将 x x x 除以该质因数,操作次数加 1 1 1

重复上述过程,直到 x x x 变为完全平方数,即可得到 K小姐需要操作的次数。

判断一个数是否为完全平方数,可以通过求其平方根,然后判断平方根的平方是否等于原数来实现。

时间复杂度为 O ( x ) O(\sqrt{x}) O(x ),其中 x x x 为输入的数。

参考代码

  • Python
from math import sqrt

N = 100010
primes = set()
st = [False] * N

def get_primes():
    for i in range(2, N):
        if not st[i]:
            primes.add(i)
            for j in range(i + i, N, i):
                st[j] = True

def is_square(x):
    t = int(sqrt(x))
    return t * t == x

def is_prime(x):
    for i in range(2, int(sqrt(x)) + 1):
        if x % i == 0:
            return False
    return True

def solve(n):
    cnt = 0
    while not is_square(n):
        if (n <= 1e5 and n in primes) or is_prime(n):
            n -= 1
            cnt += 1
        else:
            for p in primes:
                if n % p == 0:
                    n //= p
                    cnt += 1
                    break
    return cnt

get_primes()
n = int(input())
print(solve(n))
  • Java
import java.util.*;

public class Main {
    static final int N = 100010;
    static Set<Integer> primes = new HashSet<>();
    static boolean[] st = new boolean[N];

    static void getPrimes() {
        for (int i = 2; i < N; i++) {
            if (!st[i]) {
                primes.add(i);
                for (int j = i + i; j < N; j += i) {
                    st[j] = true;
                }
            }
        }
    }

    static boolean isSquare(int x) {
        int t = (int) Math.sqrt(x);
        return t * t == x;
    }

    static boolean isPrime(int x) {
        for (int i = 2; i * i <= x; i++) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }

    static int solve(int n) {
        int cnt = 0;
        while (!isSquare(n)) {
            if ((n <= 1e5 && primes.contains(n)) || isPrime(n)) {
                n--;
                cnt++;
            } else {
                for (int p : primes) {
                    if (n % p == 0) {
                        n /= p;
                        cnt++;
                        break;
                    }
                }
            }
        }
        return cnt;
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        getPrimes();
        int n = sc.nextInt();
        System.out.println(solve(n));
    }
}
  • Cpp
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
set<int> primes;
bool st[N];

void init() {
    for (int i = 2; i < N; i++) {
        if (!st[i]) {
            primes.insert(i);
            for (int j = i + i; j < N; j += i) {
                st[j] = true;
            }
        }
    }
}

bool isSquare(int x) {
    int t = sqrt(x);
    return t * t == x;
}

bool isPrime(int x) {
    for (int i = 2; i * i <= x; i++) {
        if (x % i == 0) {
            return false;
        }
    }
    return true;
}

int solve(int n) {
    int cnt = 0;
    while (!isSquare(n)) {
        if ((n <= 1e5 && primes.count(n)) || isPrime(n)) {
            n--;
            cnt++;
        } else {
            for (auto p : primes) {
                if (n % p == 0) {
                    n /= p;
                    cnt++;
                    break;
                }
            }
        }
    }
    return cnt;
}

int main() {
    init();
    int n;
    cin >> n;
    cout << solve(n) << endl;
    return 0;
}

02.K小姐的魔法石板

题目描述

K小姐有一个神奇的石板,上面有 n n n 个格子,每个格子里有一颗魔法石,第 i i i 个格子里的魔法石价值为 a i a_i ai。K小姐可以从第 1 1 1 个格子出发,每次跳跃到前面的某个格子上。但是,K小姐的跳跃距离必须是一个斐波那契数(斐波那契数列: 1 , 1 , 2 , 3 , 5 , 8 , … 1, 1, 2, 3, 5, 8, \dots 1,1,2,3,5,8,,第三项开始,每一项等于前两项之和)。K小姐想知道,如果她必须跳到第 n n n 个格子,那么她最多可以收集到多少价值的魔法石?

输入格式

第一行输入一个整数 n n n,表示石板上格子的数量。

第二行输入 n n n 个整数,第 i i i 个整数表示第 i i i 个格子里魔法石的价值 a i a_i ai

输出格式

输出一个整数,表示 K小姐最多可以收集到的魔法石的总价值。

样例输入

3
1 2 3

样例输出

6

样例输入

3
1 -2 3

样例输出

4

数据范围

1 ≤ n ≤ 2 × 1 0 5 1 \le n \le 2 \times 10^5 1n2×105
− 1 0 9 ≤ a i ≤ 1 0 9 -10^9 \le a_i \le 10^9 109ai109

题解

本题可以使用动态规划来解决。设 d p [ i ] dp[i] dp[i] 表示跳到第 i i i 个格子时可以收集到的最大魔法石价值。那么我们有以下状态转移方程:

d p [ i ] = max ⁡ j ∈ f i b ( d p [ i − j ] + a [ i ] ) dp[i] = \max_{j \in fib} (dp[i-j] + a[i]) dp[i]=jfibmax(dp[ij]+a[i])

其中, f i b fib fib 表示斐波那契数列。

我们可以预处理出前 n n n 个斐波那契数,然后使用记忆化搜索或者动态规划来计算 d p dp dp 数组的值。最终的答案即为 d p [ n ] dp[n] dp[n]

时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn),空间复杂度为 O ( n ) O(n) O(n)

参考代码

  • Python
import sys
input = lambda: sys.stdin.readline().strip()
from functools import cache

def solve():
    n = int(input())
    a = list(map(int, input().split()))
    
    fib = [1, 1]
    while fib[-1] < n:
        fib.append(fib[-1] + fib[-2])
    
    @cache
    def dp(i):
        if i == 0:
            return a[0]
        res = -float('inf')
        for f in fib:
            if i - f >= 0:
                res = max(res, dp(i - f) + a[i])
        return res
    
    return dp(n - 1)

print(solve())
  • Java
import java.io.*;
import java.util.*;

public class Main {
    static int n;
    static int[] a;
    static List<Integer> fib = new ArrayList<>();
    static long[] memo;
    
    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        n = Integer.parseInt(br.readLine());
        a = Arrays.stream(br.readLine().split(" ")).mapToInt(Integer::parseInt).toArray();
        
        fib.add(1); fib.add(1);
        while (fib.get(fib.size() - 1) < n) {
            fib.add(fib.get(fib.size() - 1) + fib.get(fib.size() - 2));
        }
        
        memo = new long[n];
        Arrays.fill(memo, -1);
        
        System.out.println(dp(n - 1));
    }
    
    static long dp(int i) {
        if (i == 0) {
            return a[0];
        }
        if (memo[i] != -1) {
            return memo[i];
        }
        long res = Long.MIN_VALUE;
        for (int f : fib) {
            if (i - f >= 0) {
                res = Math.max(res, dp(i - f) + a[i]);
            }
        }
        return memo[i] = res;
    }
}
  • Cpp
#include <bits/stdc++.h>
using namespace std;

const int N = 2e5 + 10;
int n;
int a[N];
vector<int> fib;
long long memo[N];

long long dp(int i) {
    if (i == 0) {
        return a[0];
    }
    if (memo[i] != -1) {
        return memo[i];
    }
    long long res = LLONG_MIN;
    for (int f : fib) {
        if (i - f >= 0) {
            res = max(res, dp(i - f) + a[i]);
        }
    }
    return memo[i] = res;
}

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
    
    fib.push_back(1); fib.push_back(1);
    while (fib.back() < n) {
        fib.push_back(fib.back() + fib[fib.size() - 2]);
    }
    
    memset(memo, -1, sizeof memo);
    
    cout << dp(n - 1) << endl;
    
    return 0;
}

03.K小姐的幸运数字

题目描述

K小姐非常喜欢一部小说,这部小说的第一部已经完结,但是第二部要等到明年才能开始连载。K小姐等不及了,她决定用一种特殊的方式来打发这段时间。

K小姐有一个数组,她认为数组中所有和为 3 3 3 的倍数或 5 5 5 的倍数但不是 4 4 4 的倍数的子序列都是幸运的。现在她想知道,这个数组中一共有多少个幸运子序列。

由于答案可能很大,你需要输出答案对 1 0 9 + 7 10^9+7 109+7 取模后的结果。

输入格式

第一行输入一个整数 n n n,表示数组的长度。

第二行输入 n n n 个整数 a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an,表示数组中的元素。

输出格式

输出一个整数,表示幸运子序列的数量对 1 0 9 + 7 10^9+7 109+7 取模后的结果。

样例输入

3
13 30 17

样例输出

2

数据范围

1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105
1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109

题解

本题可以使用动态规划来解决。我们可以维护两个二维数组 f 15 f15 f15 f 60 f60 f60,其中 f 15 [ i ] [ j ] f15[i][j] f15[i][j] 表示前 i i i 个数中,和模 15 15 15 等于 j j j 的子序列数量; f 60 [ i ] [ j ] f60[i][j] f60[i][j] 表示前 i i i 个数中,和模 60 60 60 等于 j j j 的子序列数量。

对于第 i i i 个数,我们可以选择将其加入子序列或不加入子序列。如果不加入子序列,那么 f 15 [ i ] [ j ] f15[i][j] f15[i][j] f 60 [ i ] [ j ] f60[i][j] f60[i][j] 的值与 f 15 [ i − 1 ] [ j ] f15[i-1][j] f15[i1][j] f 60 [ i − 1 ] [ j ] f60[i-1][j] f60[i1][j] 相同;如果加入子序列,那么 f 15 [ i ] [ j ] f15[i][j] f15[i][j] 的值等于 f 15 [ i − 1 ] [ ( j − a i )   m o d   15 ] f15[i-1][(j-a_i) \bmod 15] f15[i1][(jai)mod15] f 60 [ i ] [ j ] f60[i][j] f60[i][j] 的值等于 f 60 [ i − 1 ] [ ( j − a i )   m o d   60 ] f60[i-1][(j-a_i) \bmod 60] f60[i1][(jai)mod60]

最终的答案即为 f 15 [ n ] − f 60 [ n ] f15[n] - f60[n] f15[n]f60[n],因为满足和是 3 3 3 的倍数或 5 5 5 的倍数的子序列数量等于 f 15 [ n ] f15[n] f15[n],满足和是 3 3 3 的倍数且是 5 5 5 的倍数(即是 15 15 15 的倍数)的子序列数量等于 f 60 [ n ] f60[n] f60[n],我们需要将后者从前者中减去。

时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)

参考代码

  • Python
mod = 10**9 + 7

def solve():
    n = int(input())
    a = list(map(int, input().split()))
    
    f15 = [[0] * 15 for _ in range(n+1)]
    f60 = [[0] * 60 for _ in range(n+1)]
    f15[0][0] = f60[0][0] = 1
    
    for i in range(1, n+1):
        for j in range(15):
            f15[i][j] = (f15[i-1][j] + f15[i-1][(j-a[i-1])%15]) % mod
        for j in range(60):
            f60[i][j] = (f60[i-1][j] + f60[i-1][(j-a[i-1])%60]) % mod
    
    ans = (f15[n][0] - f60[n][0] + mod) % mod
    print(ans)

solve()
  • Java
import java.util.*;

public class Main {
    static final int MOD = (int)1e9 + 7;
    
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int[] a = new int[n];
        for (int i = 0; i < n; i++) {
            a[i] = sc.nextInt();
        }
        
        long[][] f15 = new long[n+1][15];
        long[][] f60 = new long[n+1][60];
        f15[0][0] = f60[0][0] = 1;
        
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j < 15; j++) {
                f15[i][j] = (f15[i-1][j] + f15[i-1][(j-a[i-1]+15)%15]) % MOD;
            }
            for (int j = 0; j < 60; j++) {
                f60[i][j] = (f60[i-1][j] + f60[i-1][(j-a[i-1]+60)%60]) % MOD;
            }
        }
        
        long ans = (f15[n][0] - f60[n][0] + MOD) % MOD;
        System.out.println(ans);
    }
}
  • Cpp
#include <bits/stdc++.h>
using namespace std;

const int MOD = 1e9 + 7;

int main() {
    int n;
    cin >> n;
    vector<int> a(n);
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
    
    vector<vector<long long>> f15(n+1, vector<long long>(15));
    vector<vector<long long>> f60(n+1, vector<long long>(60));
    f15[0][0] = f60[0][0] = 1;
    
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < 15; j++) {
            f15[i][j] = (f15[i-1][j] + f15[i-1][(j-a[i-1]+15)%15]) % MOD;
        }
        for (int j = 0; j < 60; j++) {
            f60[i][j] = (f60[i-1][j] + f60[i-1][(j-a[i-1]+60)%60]) % MOD;
        }
    }
    
    long long ans = (f15[n][0] - f60[n][0] + MOD) % MOD;
    cout << ans << endl;
    
    return 0;
}

写在最后

📧 KK这边最近正在收集近一年互联网各厂的笔试题汇总,如果有需要的小伙伴可以关注后私信一下 KK领取,会在飞书进行同步的跟新。

在这里插入图片描述

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2023年3月11日,美团春季招聘笔试中共包含五道编程题目。以下是对每道题目的简要说明: 1. 题目一:这道题目要求解决一个数字统计的问题。可能涉及到的知识点包括数据结构、循环和条件判断等。解决问题的思路可能是使用字典等数据结构来保存统计结果,并使用循环逐个读取输入数据并进行统计。 2. 题目二:这道题目可能是一个字符串处理的问题。需要使用字符串的方法进行操作,如提取、拼接、查找和替换等。可能的解决思路包括使用正则表达式、切片和遍历等。 3. 题目:这道题目可能涉及到算法和数据结构的知识。可能是一道涉及到数组、链表、树等数据结构的问题。解决思路可能包括遍历、递归、搜索和排序等。 4. 题目四:这道题目可能是一个动态规划的问题。需要根据给定的条件和规则,通过动态规划的方式求解问题。解决思路包括定义状态和转移方程,使用递推或记忆化搜索进行求解。 5. 题目五:这道题目可能是一个图论或网络问题。需要根据给定的图或网络结构,解决一个相关的问题。可能涉及到广度优先搜索、深度优先搜索、最短路径等知识。解决思路可能包括使用图或网络的相关算法进行求解。 以上只是对这五道编程题目的一些可能情况进行的简要描述,具体的题目内容可能会有所不同。希望这些信息能对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值