什么是CPK

CPK

 

过程控制中的意义

  CPK:Complex Process Capability index 的缩写,是现代企业用于表示制程能力的指标。   
      制程能力是过程性能的允许最大变化范围与过程的正常偏差的比值。   
      制程能力研究在於确认这些特性符合规格的程度,以保证制程成品不符规格的不良率在要求的水准之上,作为制程持续改善的依据。   当我们的产品通过了GageR&R的测试之后,我们即可开始Cpk值的测试。   
      CPK值越大表示品质越佳。   
      Cpk——过程能力指数   
       CPK= Min[ (USL- Mu)/3s, (Mu - LSL)/3s]
  
       Cpk应用讲义:   
       1. Cpk的中文定义为:制程能力指数,是某个工程或制程水准的量化反应,也是工程评估的一类指标。   
       2. 同Cpk息息相关的两个参数:Ca , Cp.   Ca: 制程准确度。 Cp: 制程精密度。   
       3. Cpk, Ca, Cp三者的关系: Cpk = Cp * ( 1 - |Ca|),Cpk是Ca及Cp两者的中和反应,Ca反应的是位置关系(集中趋势),Cp反应的是散布关系(离散趋势)   
      4. 当选择制程站别Cpk来作管控时,应以成本做考量的首要因素,还有是其品质特性对后制程的影响度。   
      5. 计算取样数据至少应有20~25组数据,方具有一定代表性。   
      6. 计算Cpk除收集取样数据外,还应知晓该品质特性的规格上下限(USL,LSL),才可顺利计算其值。   
      7. 首先可用Excel的“STDEV”函数自动计算所取样数据的 标准差(σ),再计算出规格公差(T),及规格中心值(U). 规格公差T=规格上限-规格下限;规格中心值U=(规格上限+规格下限)/2;   
      8. 依据公式:Ca=(X-U)/(T/2) , 计算出制程准确度:Ca值 (X为所有取样数据的平均值)   
      9. 依据公式:Cp =T/6σ , 计算出制程精密度:Cp值   
     10. 依据公式:Cpk=Cp(1-|Ca|) , 计算出制程能力指数:Cpk值   
     11. Cpk的评级标准:(可据此标准对计算出之制程能力指数做相应对策)   
     A++级 Cpk≥2.0 特优 可考虑成本的降低   
     A+ 级 2.0 > Cpk ≥ 1.67 优 应当保持之   
     A 级 1.67 > Cpk ≥ 1.33 良 能力良好,状态稳定,但应尽力提升为A+级   
     B 级 1.33 > Cpk ≥ 1.0 一般 状态一般,制程因素稍有变异即有产生不良的危险,应利用各种资源及方法将其提升为 A级   
     C 级 1.0 > Cpk ≥ 0.67 差 制程不良较多,必须提升其能力   
     D 级 0.67 > Cpk 不可接受 其能力太差,应考虑重新整改设计制程。   
     CPK与PPK都是表示制程能力的参数,现代计算中多采用Minitab软件来实现,方便快捷。
<think>嗯,用户问的是机器视觉中的CPK是什么。首先,我需要明确CPK的定义。CPK是一个统计指标,用来衡量过程的稳定性和能力,通常在质量控制中使用。但在机器视觉的上下文中,可能有所不同。 接下来,我应该把CPK和机器视觉结合起来。机器视觉用于检测产品质量,比如通过摄像头和图像处理来测量尺寸、外观等。CPK在这里可能用于评估这个检测过程的能力,确保其稳定可靠。 需要确认CPK的计算方法是否与传统一致,即CPK = min[(USL - μ)/3σ, (μ - LSL)/3σ]。这里USL和LSL是规格上下限,μ是过程均值,σ是标准差。在机器视觉中,σ可能来自于测量系统的重复性和再现性(GR&R)。 用户可能想知道CPK在机器视觉中的具体应用场景,比如评估视觉系统的测量精度是否满足生产要求。可能需要举例说明,比如在检测零件尺寸时,CPK值高表示视觉系统能可靠区分合格与不合格品。 同时,要区分CPK和PPK,前者考虑过程稳定性,后者考虑整体性能。在机器视觉中,可能更关注CPK,因为需要确保测量系统本身的稳定性和能力。 需要提醒用户,提高CPK的方法可能包括优化视觉系统的光照、镜头校准、算法改进等,以减少测量误差(σ),或者调整规格限。 最后,确保解释清晰,结构合理,用中文口语化表达,避免专业术语堆砌,让用户容易理解。</think>好的,我来逐步解释机器视觉中的CPK: 1. **CPK的定义** CPK(Process Capability Index)中文译为**过程能力指数**,本质是衡量生产过程稳定性和精度的统计指标。在机器视觉中,它特指**用视觉系统执行检测/测量任务时的综合能力评估**。 2. **核心公式** $$ C_{pk} = \min\left( \frac{USL - \mu}{3\sigma},\ \frac{\mu - LSL}{3\sigma} \right) $$ - $USL/LSL$:产品规格的上下限(如零件长度允许的最大/最小值) - $\mu$:视觉系统多次测量的平均值 - $\sigma$:测量结果的标准差(反映视觉系统波动) 3. **机器视觉中的特殊意义** - **测量系统评估**:量化视觉设备(相机+算法)的重复性与再现性 - **缺陷检出能力**:CPK>1.33表示系统能可靠区分合格品与不合格品 - **过程控制依据**:例如芯片焊接位置检测中,CPK低可能预示设备需要校准 4. **典型应用场景** | 场景 | CPK计算重点 | 合格标准 | |---|---|---| | 尺寸测量 | 测量值与CAD模型的理论值偏差 | CPK≥1.67 | | 外观检测 | 缺陷识别的一致性(如划痕检出率) | CPK≥1.33 | | 定位精度 | 机械手抓取位置的重复精度 | CPK≥2.0 | 5. **提升CPK的关键方法** - **降低$\sigma$**:优化照明方案、提高相机分辨率、改进图像处理算法 - **调整公差带**:与设计部门协商放宽非关键尺寸的USL/LSL - **系统校准**:定期进行标定板校准(如使用$25mm \times 25mm$棋盘格标定板) 6. **注意事项** - CPK≠准确度:即使$\mu$接近理论值,若$\sigma$过大仍会导致低CPK - 需配合GR&R分析:通常要求测量系统的GR&R≤10%才能保证CPK有效性 - 动态监控:建议每班次用$N=30$的样本量持续计算CPK趋势 案例说明:某汽车零件视觉检测站测量孔径,规格要求$10.0mm \pm0.1mm$,连续测量100次得到$\mu=10.05mm$,$\sigma=0.02mm$,则: $$ C_{pk} = \frac{10.1 - 10.05}{3\times0.02} = 0.83 $$ 这表明当前系统能力不足,需要排查镜头畸变或聚焦问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值