第3节 资金都去哪了——个股资金流向

文章探讨了不同交易软件如大智慧、同花顺和东方财富在计算资金流向时的算法差异,导致显示的数据不一致。各软件对大中小单的定义不同,影响了资金流入流出的统计。此外,文中提供了获取日内交易明细和个股资金流向的代码示例,并提出了按个股资金流入排序的任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于各种交易软件的资金流向科普

用同一只股票,然后使用大智慧、同花顺、东方财富看盘口数据,资金流入流出情况,会发现每家的数据都不一致,有时候还会相差很大。这就是因为每家软件对资金流向的计算方式不一致的问题!

关于各家的一些大中小单的划分规则如下:

大智慧

小 单: (<2 万股 或 4 万元 )
中 单 : (2-10 万股 或 4-20 万元 )
大 单 : (10-50 万股 或 20-100 万元 )
特大单 : (>50 万股 或 100 万元 )

同花顺

小 单 : 100手以下
中 单 : 200手
大 单 : 500手<大单<1000手
特大单 : >1000手

东方财富

特大单 : 每笔100万资金以
大 单 : 每笔50-100
中 单 : 每笔10-50
小 单 : 每笔10万以内

日内交易明细

获取股票最新交易日成交明细

'''  
日内交易明细  
'''  
df = ef.stock.get_deal_detail('000651')  
print(df)

个股资金流向

东方财富网-数据中心-个股资金流向

# 上海证券交易所: sh, 深证证券交易所: sz, 北京证券交易所: bj  
df = ak.stock_individual_fund_flow(stock="000651", market="sh")  
print(df)

同花顺-数据中心-资金流向-个股资金流

# “即时”, "3日排行", "5日排行", "10日排行", "20日排行"  
df = ak.stock_fund_flow_individual(symbol="即时")
print(df)

本节课任务

任务: 按照个股资金流入最高进行排序

答案在配套视频中

专栏说明

  • TuShare、AKShare、Efinance、Qstock框架的使用;
  • 结合Pandas的数据获取和展示 (配套视频中讲解)
  • 其它一些小技巧 (配套视频中讲解)

📢适合人群:

  • 没有时间盯盘的上班族
  • 对量化交易感兴趣的朋友
  • 希望通过炒股实现财务增长的朋友

配套视频

想通过视频学习该系列课程的小伙伴, 可以点击这里

### 使用Python实现个股资金流向分析 #### 方法概述 个股资金流向分析可以帮助投资者了解市场情绪和主力资金的动向,从而辅助决策。通过Python编程语言,可以方便地获取并处理这些数据。常用的数据源包括AkShare库和其他网络API接口。 #### 实现步骤 ##### 数据获取 使用`akshare`库可以直接从A股市场获取个股资金流信息。该库提供了简洁易用的接口来访问多种类型的金融数据[^5]。 ```python import akshare as ak # 获取指定股票资金流向数据 (以600094为例) df = ak.stock_individual_fund_flow(stock="600094", market="sh") # 将结果保存到CSV文件中以便后续查看或进一步分析 df.to_csv(&#39;individual_stock_fund_flow_data.csv&#39;, header=True, index=False) ``` 这段代码会下载上海交易所上市编号为600094这只股票最近一段时间内的每日资金流入流出情况,并将其存入名为`individual_stock_fund_flow_data.csv` 的CSV 文件里。 ##### 数据预览与初步清洗 读取刚刚保存下来的CSV文件并对其中的数据做一些简单的清理工作: ```python import pandas as pd # 加载之前保存的数据集 fund_flow_df = pd.read_csv(&#39;individual_stock_fund_flow_data.csv&#39;) # 查看前几条记录确认加载成功 print(fund_flow_df.head()) # 对日期列进行转换使其更易于理解和操作 fund_flow_df[&#39;date&#39;] = pd.to_datetime(fund_flow_df[&#39;date&#39;]) # 删除重复项(如果有) fund_flow_df.drop_duplicates(inplace=True) # 排序使得最新的一天排在最前面 fund_flow_df.sort_values(by=&#39;date&#39;, ascending=False, inplace=True) ``` 上述脚本首先打印了几行原始数据供快速浏览,接着进行了必要的类型转换以及除可能存在的冗余记录等基本维护任务。 ##### 可视化展示 为了更好地理解所收集的信息,可以通过图表的形式直观呈现出来。这里采用Matplotlib绘制柱状图表示不同时间段内净买入金额的变化趋势: ```python import matplotlib.pyplot as plt plt.figure(figsize=(12, 6)) plt.bar(x=fund_flow_df.index, height=fund_flow_df[&#39;net_amount_main&#39;], color=[&#39;green&#39; if x > 0 else &#39;red&#39; for x in fund_flow_df[&#39;net_amount_main&#39;]]) plt.title(&#39;Net Main Force Buying Amount Over Time&#39;) plt.xlabel(&#39;Date Index&#39;) plt.ylabel(&#39;Amount (RMB)&#39;) plt.show() ``` 此部分创建了一个图形窗口,在里面画出了每一天主要力量净购额随时间变化的情况——正值显示绿色代表净买入,负值则用红色标记意味着净卖出。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qnloft

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值