tensorflow
文章平均质量分 61
qoopqpqp
这个作者很懒,什么都没留下…
展开
-
tensorflow学习:placeholder用法
用户输入两个值,计算两个值的乘积import tensorflow as tf#placeholder 类似于c++的cin,要求用户运行时输入input1 = tf.placeholder(tf.float32, [2, 2])input2 = tf.placeholder(tf.float32, [2, 2])input3 = tf.placeholder(tf.float32原创 2017-07-14 10:36:41 · 10390 阅读 · 0 评论 -
tensorflow学习:建立一个最简单的神经网络
程序功能:使用y= x^2 - 0.5加噪声生成1000个样本点,然后搭建一个最简单的神经网络学习import tensorflow as tfimport numpy as npdef add_layer(input_data, input_size, output_size, activation_function = None): ''' input_da原创 2017-07-14 15:05:56 · 1096 阅读 · 0 评论 -
tensorflow学习:mnist图片分类,并打印预测精度
使用softmax对mnist图片分类,并获取预测的准确度import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data/', one_hot=True)x_data = tf.placehold原创 2017-07-15 16:04:18 · 1786 阅读 · 0 评论 -
tensorflow学习:常用函数说明
#产生一个2*100的二维数组,数值在0-1之间,服从均匀分布x_data = np.float32(np.random.rand(2, 10))#产生1*1的零值矩阵b = tf.Variable(tf.zeros([1]))#产生一个1*2的随机数矩阵,值在(-1,1)之间,服从均匀分布W = tf.Variable(tf.random_uniform([1, 2], -1.0,原创 2017-07-17 11:04:39 · 505 阅读 · 0 评论 -
tensorflow学习:使用tensorflow实现word embedding
今天学习使用tensorflow实现word embedding,下面的例子来自于tensorflow的官方文档,实现word embedding本身是比较复杂的,下文只用比较简单的方法实现,限于本人刚入门,水平有限,有些细节还没有彻底搞明白,还需要再花些时间研究,现把今天的研究成果记下供日后继续完善。文本参考:https://liusida.github.io/2016/11/14/stud原创 2017-07-24 19:51:52 · 6778 阅读 · 0 评论