tensorflow学习:mnist图片分类,并打印预测精度

本文介绍了如何运用TensorFlow进行MNIST手写数字图像的分类,通过softmax函数实现模型训练,并详细说明了如何计算预测的准确性。
摘要由CSDN通过智能技术生成

使用softmax对mnist图片分类,并获取预测的准确度

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)

x_data = tf.placeholder(tf.float32, [None, 28 * 28])
y_data = tf.placeholder(tf.float32, [None, 10])

#创建一个隐藏层,输入数据:x_data, 输出10个神经元,激励函数使用softmax
prediction = tf.layers.dense(x_data, 10, tf.nn.softmax)

# tf.reduce_sum的用法
# x is [[1, 1, 1]
#       [1, 1, 1]]
# tf.reduce_sum(x) => 6
# tf.reduce_sum(x, 0) => [2, 2, 2]
# tf.reduce_sum(x, 1) => [3, 3]

#损失函数,一般softmax和交叉熵损失配合使用
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_data * tf.log(prediction), reduction_indices=[1]))
#cross_entropy = tf.reduce_mean(-y_data * tf.log(prediction))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

def computer_accuracy(x_input, y_input):
    &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值