L2-InternVL 多模态模型部署微调实践

安装环境

conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0

我就直接复用之前的lmdeploy环境了

复制数据集

测试模型

推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。

调整配置文件

由于我是整卡a100

这里调高了lora rank

开始训练

NPROC_PER_NODE=1 xtuner train /root/train-config.py --work-dir /train-work_dir/internvl_ft_run_8_filter  --deepspeed deepspeed_zero1

接下来要做的就是 默默等待

训练完成

开始合并模型进行测试

效果比之前好太多了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值