前缀树
前缀树 是 N叉树 的一种特殊形式。通常来说,一个前缀树是用来存储字符串的。前缀树的每一个节点代表一个字符串(前缀)。每一个节点会有多个子节点,通往不同子节点的路径上有着不同的字符。子节点代表的字符串是由节点本身的原始字符串 ,以及通往该子节点路径上所有的字符组成的。下面是前缀树的一个例子:

树节点:
// 节点类
static class TrieNode {
// 单词标记
private boolean isWord;
// 字符表
private Map<Character, TrieNode> childrenMap = new HashMap<>();
}
插入前缀
当我们在二叉搜索树中插入目标值时,在每个节点中,我们都需要根据节点值和目标值之间的关系,来确定目标值需要去往哪个子节点。同样地,当我们向前缀树中插入一个目标值时,我们也需要根据插入的目标值来决定我们的路径。
更具体地说,如果我们在前缀树中插入一个字符串 S,我们要从根节点开始。 我们将根据 S[0](S中的第一个字符),选择一个子节点或添加一个新的子节点。然后到达第二个节点,并根据 S[1] 做出选择。 再到第三个节点,以此类推。 最后,我们依次遍历 S 中的所有字符并到达末尾。 末端节点将是表示字符串 S 的节点。例:

搜索前缀
正如我们在前缀树的简介中提到的,所有节点的后代都与该节点相对应字符串的有着共同前缀。因此,很容易搜索以特定前缀开头的任何单词。
同样地,我们可以根据给定的前缀沿着树形结构搜索下去。一旦我们找不到我们想要的子节点,搜索就以失败终止。否则,搜索成功。为了更具体地解释搜索的过程,我们提供了下列示例:

/**
* 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
*
* @param prefix 前缀
* @return
*/
public boolean startsWith(String prefix) {
TrieNode cur = root;
//若循环正常执行完,表示所有的前缀都存在,直接返回true
for (int i = 0; i < prefix.length(); i++) {
char c = prefix.charAt(i);
//若查找的前缀不存在,则直接返回false
if (cur.childrenMap.get(c) == null) {
return false;
}
//移动到下一个节点对象
cur = cur.childrenMap.get(c);
}
return true;
}
搜索单词
你可能还想知道如何搜索特定的单词,而不是前缀。我们可以将这个词作为前缀,并同样按照上述同样的方法进行搜索。如果搜索失败,那么意味着没有单词以目标单词开头,那么目标单词绝对不会存在于前缀树中。如果搜索成功,我们需要检查目标单词是否是前缀树中单词的前缀,或者它本身就是一个单词。为了进一步解决这个问题,你可能需要稍对节点的结构做出修改。
/**
* 查找指定的前缀是否存在
*
* @param word 字符串单词
* @return 若字符串work在前缀树中,返回true,否则返回false
*/
public boolean search(String word) {
TrieNode cur = root;
//若循环正常执行完,表示所有的前缀都存在,根据isWord属性值来判断是否为一个单词
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
//若查找的前缀不存在,则直接返回false
if (cur.childrenMap.get(c) == null) {
return false;
}
//移动到下一个节点对象
cur = cur.childrenMap.get(c);
}
return cur.isWord;
}
前缀树代码实现
/**
* Author : AiTao
* Date : 2020/11/9
* Time : 19:56
* Information : 前缀树
*/
public class PrefixTrie {
// 节点类
private static class TrieNode {
// 单词标记
private boolean isWord;
// 字符表
private Map<Character, TrieNode> childrenMap = new HashMap<>();
}
// 根节点
private TrieNode root;
//初始化前缀树对象
public PrefixTrie() {
root = new TrieNode();
}
/**
* 向前缀树中插入字符串word
*
* @param word 字符串单词
*/
public void insert(String word) {
TrieNode cur = root;
for (int i = 0; i < word.length(); i++) {
// 将字符串拆分成一个个字符
char c = word.charAt(i);
// 如果路径不存在,直接插入一个节点对象
if (cur.childrenMap.get(c) == null) {
cur.childrenMap.put(c, new TrieNode());
}
//移动到下一个节点对象
cur = cur.childrenMap.get(c);
}
cur.isWord = true;
}
/**
* 查找指定的前缀是否存在
*
* @param word 字符串单词
* @return 若字符串work在前缀树中,返回true,否则返回false
*/
public boolean search(String word) {
TrieNode cur = root;
//若循环正常执行完,表示所有的前缀都存在,根据isWord属性值来判断是否为一个单词
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
//若查找的前缀不存在,则直接返回false
if (cur.childrenMap.get(c) == null) {
return false;
}
//移动到下一个节点对象
cur = cur.childrenMap.get(c);
}
return cur.isWord;
}
/**
* 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
*
* @param prefix 前缀
* @return
*/
public boolean startsWith(String prefix) {
TrieNode cur = root;
//若循环正常执行完,表示所有的前缀都存在,直接返回true
for (int i = 0; i < prefix.length(); i++) {
char c = prefix.charAt(i);
//若查找的前缀不存在,则直接返回false
if (cur.childrenMap.get(c) == null) {
return false;
}
//移动到下一个节点对象
cur = cur.childrenMap.get(c);
}
return true;
}
462

被折叠的 条评论
为什么被折叠?



