ItermCF的MR并行实现

ItermCF的MR并行实现

@(Hadoop)


ItermCF的基本思想

基于物品相似度的协同过滤推荐的思想大致可分为两部分:

1.计算物与物之前的相似度
2.根据用户的行为历史,给出和历史列表中的物品相似度最高的推荐

通俗的来讲就是:

对于物品 A,根据所有用户的历史偏好,喜欢物品 A 的用户都 喜欢物品 C,得出物品 A 和物品 C 比较相似,而用户 C 喜欢物品 A,那么可以推断出 用户 C 可能也喜欢物品 C。

ItermCF的算法实现思路

对于以下的数据集:

UserIdItermIdPreference
11015
11023
11032.5
21012
21022.5
21035
21042
31012
31044
31054.5
31075
41015
41033
41044.5
41064
51014
51023
51032
51044
51053.5
51064
61024
61032
61053.5
61074

用户评分矩阵

首先可以建立用户对物品的评分矩阵,大概长这个样子:

1011021031041051061071532.50000222.552000320044.50545034.504454324340

列为UserId,行为ItermId,矩阵中的值代表该用户对该物品的评分。

从列的方向看,该矩阵的每一个列在mr程序中可以用一行简单的字符串来表示:

1   101:5,102:3,103:2.5 ...   

这样一来,上面的矩阵5个列就可以由5行类似的字符串来构成。
那么第一个mr任务的功能就是一个简单的数据转换过程:

1.输入的key为行偏移量,value为每行内容,形如:1,101,5.0
2.在map阶段,分割每行内容,输出的key为1,value为101:5.0
3.在reduce阶段,将UserId相同的所有评分记录进行汇总拼接,输出的key仍然为1,value形如:101:5,102:3,103:2.5 …

如此一来通过第一个mr任务得到了用户的评分矩阵。

物品同现矩阵

该矩阵大概长这个样子:

矩阵的值表示,两个物品同时被用户喜欢(评过分)的次数,例如:101和102这个组合被1,2,5三个用户喜欢过,那么在矩阵中101和102对应的值就是3。

这个矩阵的意义就是各个物品之间的相似度,为什么可以这么说?
如果两个物品经常同时被很多用户喜欢,那么可以说这两个物品是相似的,同时被越多的用户喜欢(即为通同现度,上面矩阵中的值),这两个物品的相似度就越高
其实观察可以发现,行和列上相同的(比如101和101)相比其他值(比如101和102,101和103)都是最大的,因为101和101就是同一个物品,相似度肯定是最大的

从列的方向上看,这个同现矩阵的每一列在mr程序中可以通过下面简单的字符串来表示:

101:101 5   
101:102 3
101:103 4
...

m*n的同现矩阵就由m个以上的字符串(n行)组成。

那么第二个mr任务的功能就是在第一个mr任务的输出结果上得到物品同现矩阵:

1.输入的key为偏移量,输入的value为UserId+制表符+ItermId1:Perference1,ItermId2:Perference2…
2.输入的value中,UserId和Perference是不需要关心的,观察物品的同现矩阵,map阶段的工作就是将每行包含的ItermId都解析出来,全排列组合作为key输出,每个key的value记为1。
3.在reduce阶段所做的就是根据key对value进行累加输出。

如此一来便能够得到物品的同现矩阵。

物品同现矩阵和用户评分矩阵的相乘

物品同现矩阵*用户评分矩阵=推荐结果:

为什么两个矩阵相乘可以得到推荐结果?
物品1和各个物品的同现度*用户对各个物品的喜好度,反应出用户对物品1的喜好度。

例如,要预测用户3对103物品的喜好度,我们需要找到和103相似的物品,比如101物品,和103的同现度为4,是很类似的物品,用户3对101的评分为2,那么一定程度上可以反映出用户对103的喜好度,101和103的相似度(即同现度)*用户3对101的评分可以得到用户3对103的喜好度权重,将用户3对各个物品的权重相加,可以反映出用户3对103的喜好度

了解矩阵相乘的意义之后,第三个mr任务的功能就是实现两个矩阵的相乘,并将结果输出。

在这个mr任务中,这两个矩阵的相乘可以这样来计算:

将同现矩阵存入一个Map中,形如:

Map<String, Map<String, Double>> colItermOccurrenceMap = new HashMap<String, Map<String, Double>>();

同现矩阵中的每一行就是大Map中的一条记录,每行对应的每列都在该记录的小Map中。

在map阶段的开始的时候初始化这个Map,输入的value形如101:101 5,101:102 3,将101作为大Map的key,value为小Map,小Map的key为101/102,value为5/3。

由于map函数读取文件是并发读取的,不能保证两个输入文件的读取顺序(在同一个文件中也不能保证),所以这里使用Hadoop提供的分布式缓存机制来对同现矩阵进行共享。

关于Hadoop的分布式缓存机制请看:
Hadoop的DistributedCache机制

初始化同现矩阵之后,读取评分矩阵的每一行,输入的value为1 101:5,102:3,103:2.5 …
将每行的itermIds和对应的评分数提取出来,遍历itermId,根据itermId到itermOccurrenceMap中找到对应的List集合,找到每个itermId在该集合中对应的itermId2记录,将评分数*同现度,之后进行累加,以UserId:ItermID作为key,累加值作为value输出。

reduce的工作就很简单了,根据key对value进行累加输出即可。

项目代码

源码Github地址

作者:@小黑

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值