卡特兰数及各种应用问题的统一理解方式

1. 卡特兰数的基本性质

      卡特兰数一般用于计算组合方式的多少,它针对某一类排列组合问题。

1.1 通项公式

      递推公式:

       h(n) = h(0)h(n-1)+h(1)h(n-2)+...+h(n-1)h(0)

      其中h(0) = h(1) = 1。

      上式可以简化成:(简化公式不方便理解,但方便编程,所以本文只考虑递推公式)

      h(n)=\frac{1}{n+1}C^n_{2n}

      h(n+1)=\frac{1}{n+2}C^{n+1}_{2n+2}

      h(n+1)=\frac{2(2n+1)}{n+2}h(n)  (便于编程求卡特兰数列的公式)

1.2 通项公式的理解

      固定某一个,可以将n分成两半,遍历固定n个元素,可以将总统计数分成n份,n份排列组合数相加就得总数。

      对于单份,我们将两半的数量固定,则在计算单份的排列组合时,要分别计算两半的排列组合,再将两半的排列组合数相乘,就得该单份的排列组合数。

1.3 卡特兰数应用问题的共性

      如果问题的规模是n,我们可以将问题通过固定一个元素分解成n个子问题,而且每个子问题还可以分解成两个子问题。

1.4        h(n)=\frac{1}{n+1}C^n_{2n}这个公式的推导

      首先,这个公式可以通过h(n) = h(0)h(n-1)+h(1)h(n-2)+...+h(n-1)h(0)使用展开式推出来,这好像是高中的知识,有点忘了。我们还有回到数形结合法吧(折线法)。

      例子:求从原点(0,0)出发,第一步只能往上走,且往下走n次,往下走n次,要求路径不能通过第4象限,求到达点(2n,0)的路径数。

      分析:至于这个路径为什么是卡特兰数,请求参考下文中的例子2.4,2.5,2.6这三个例子。

      (1)如果没有“路径不能通过第4象限”这个要求,我们可以得到的总路径数是}C^n_{2n}。这是简单的排列组合,有2n个位置,取出n个位置放向上走的操作,剩下的n个位置是向下走。

      (2)主要是要求不满足条件的路径数。不满足条件的路径有什么特点呢?特定是:经过第四象限的路径必然会与 y = -1这条直线相交。

      (3)我们对每条不满足条件的路径,找到它与y=-1相交的第一个点,记为点P,然后将该路径在点P之后的线作关于y=-1对称的折线,新作出来的折线如图中的红线,我P点之前的折线构成一条从点(0,0)到点(2n,-2)的路径。

      (4)每条不满足条件的路径都能通过步骤3的方法作出一条从点(0,0)到点(2n,-2)的路径 , 这些从(0,0)到(2n,-2)的路径都满足条件往下走总比往上走多两次。

       (5)这样,我们就能通过求从点(0,0)到点(2n,-2)的路径数,得到不满足路径数,即C^{n-1}_{2n}

      (6)这里其实还有点难理解,拿每条不满足的路径都可以生成一条从点(0,0)到点(2n,-2)的路径,那就能说明不满足条件路径数就等于从点(0,0)到点(2n,-2)的路径数吗?显然好像还缺一个反推理,即我们把每条从点(0,0)到点(2n,-2)的路径,通过步骤(3)的方式变换,也能得到一条不满足条件的路径。这样才能说明是一 一对应的。

      (7)

      h(n)=C^n_{2n} - C^{n-1}_{2n} = \frac{1}{n+1}C^n_{2n}

2. 应用例子及理解

2.1 n个结点构成的不同二叉树的数量

      分析:

      (1) 设:h(n) 表示n个节点组成的不同二叉树的数量;

      (2)我们选择第一个节点当根节点,第一个节点左边的节点(0个节点)组成左子树,第一个节点右边的节点(n-1个节点)组成右子树,则如果我们选择第一个节点当树节点,那么,我们得到的不同的二叉树的数量为h(0)h(n-1);

      (3)同理我们选择第二个节点当根节点得到的不同的二叉树的数量分h(1)h(n-2);

      (4)我们分别让第1,2,..,n个节点当根节点,得到不同的二叉树总数就是   

               h(n) = h(0)h(n-1)+h(1)h(n-2)+...+h(n-1)h(0)

2.2 矩阵相乘,不同的加括号方法 a_1*a_2*...*a_{n+1}

     分析:

      (1)我们先找出元素,这里的元素是指乘法运算符。

      (2)设:h(n)表示有n个乘号的运算式的运算顺序数量。

      (3)我们选择第一个乘号做为最后一个作运算的,则我们需要将该乘号两边的式子用括号括起来。该乘号左边有0个乘号,则左边式子的运算顺序数为h(0),同理右边有n-1个乘号,右边式子的运算顺序数有h(n-1),则当我们选择第一个乘号作为最后的运算符时,整个式子的运算顺序数有h(0)h(n-1);

      (4)同理,如果我们选择第二个乘号作为最后一个运算符,那么式子的运算顺序数为h(1)h(n-2);

      (5)我们分别让第1,2,...,n个乘号当最后一个运算符,那么,得到不同的运算顺序数为

               h(n) = h(0)h(n-1)+h(1)h(n-2)+...+h(n-1)h(0)

2.3 求一个凸多边形区域划分成三角形区域的方法数?

      分析:我们用一种方法把一个n+3条边的凸分成三角形,我们需要n条边。

      (1)在这里,我们的元素是:用一种方法从一个角出发连接其它所有角需要n条边,这n条边就是元素。

2.4 有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少种排队方法使得只要有10元的人买票,售票处就有5元的钞票找零?

      分析:我们先找一种排列,满足条件。这种排列为:5,10,5,10,...,5,10,即每个5元之后跟着一个10元就行了。

      (1)这里,我们取一个(5,10)对当作分割元素,显然分割出来的两半,都有5元个数等于10元个数。

2.5 n*n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数

      分析:这个题目我是借助2.4这个场景理解的。证明这个路径数是卡特兰数之前,我们要做一个转换。

      (1)通过分析题目,我们发现,从左下角走到右上角,需要走2n步,并且需要向右走n步,向上走n步,走的过程中,我们要保持向右走的次数大于等于向上走的次数。

      (2)这不就是5元的个数必须大于10元的个数吗?!

2.6 一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

      分析:这个题目还得借助5元10元!!!。入栈是个5元,出栈是个10元,永远要保持入栈大于等于出栈!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值