【Ragflow】11. 文件解析流程分析/批量解析实现

概述

本文继续对ragflow文档解析部分进行分析,并通过脚本的方式实现对文件的批量上传解析。

文件解析流程

文件解析的请求处理流程大致如下:

1.前端上传文件,通过v1/document/run接口,发起文件解析请求

2.后端api\apps\document_app.pyrun函数接收请求,校验用户权限,处理文档解析运行信息,创建新的任务队列

3.后端api\db\services\task_service.pyqueue_tasks函数进一步根据文档根据文档类型和页数,将文档分割成多个子任务,并通过解析器进行解析。

4.解析器在deepdoc\parser路径下,对于docx、excel、pdf等不同格式的文件都有不同的解析策略。其中,pdf的解析策略最为复杂,因为要设计需要先转成图像,再进行ocr文本识别。

5.解析完成后,会生成文本块,并构建索引,存储到向量数据库。

在解析过程的同时,前端同时还会定时向v1/document/list这个接口发起轮询,以获取解析的进度信息。

文件解析模型

ragflow的文件解析采用了名为deepdoc的模型,该模型的相关资料并不多,是其自研的模型,在hugging face上公布了具体的模型权重:

hf地址:https://huggingface.co/InfiniFlow/deepdoc

从模型体积上看,其采用的模型并不大,但对不同的任务,会采用不同的模型,比如OCR(光学字符识别)、TSR(表格结构识别)、DLA(文档布局分析)等多种解析任务。

文件解析加速实验

由于解析模型都是onnx形式的模型,因此,如果使用gpu进行解析,理论上可以显著加速解析速度。

于是下面做个实验,通过docker-compose-gpu.yml文件启动容器,使其能够访问外部gpu。

启动命令:

docker compose -f docker-compose-gpu.yml up -d

对于一篇学位论文的pdf文件,未使用gpu,通过docker-compose.yml进行解析,花费时间约10分钟。

使用gpu配置启动容器,对相同文件进行解析,发现cpu多核全部拉满,gpu仍然未工作,因此速度基本无差别。

说明仅通过docker-compose-gpu.yml似乎无法成功利用上gpu资源,此点还需进一步论证。

观察docx和pdf的解析器设置,docx只需要解析纯文本信息,而无需进行ocr处理,因此理论解析速度会比pdf文件快很多,下面进行一个实验,比较word文件和pdf文件的解析日志,内容如下:

word格式文件解析日志:

进度:
15:36:34 Task has been received.
15:36:34 Page(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zstar-_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值