RAGFlow解析(分块)方法说明

"General" 分块方法说明
支持的文件格式为DOCX、EXCEL、PPT、IMAGE、PDF、TXT、MD、JSON、EML、HTML。
此方法将简单的方法应用于块文件:
系统将使用视觉检测模型将连续文本分割成多个片段。
接下来,这些连续的片段被合并成Token数不超过“Token数”的块。

"Q&A" 分块方法说明
此块方法支持 excel 和 csv/txt 文件格式。
如果文件是 excel 格式,则应由两个列组成 没有标题:一个提出问题,另一个用于答案, 答案列之前的问题列。多张纸是只要列正确结构,就可以接受。
如果文件是 csv/txt 格式 以 UTF-8 编码且用 TAB 作分开问题和答案的定界符。
未能遵循上述规则的文本行将被忽略,并且每个问答对将被认为是一个独特的部分。

"Resume" 分块方法说明
支持的文件格式为DOCX、PDF、TXT。
简历有多种格式,就像一个人的个性一样,但我们经常必须将它们组织成结构化数据,以便于搜索。
我们不是将简历分块,而是将简历解析为结构化数据。 作为HR,你可以扔掉所有的简历, 您只需与'RAGFlow'交谈即可列出所有符合资格的候选人。

"Manual" 分块方法说明
仅支持PDF。
我们假设手册具有分层部分结构。 我们使用最低的部分标题作为对文档进行切片的枢轴。 因此,同一部分中的图和表不会被分割,并且块大小可能会很大。

"Table" 分块方法说明
支持
EXCEL和CSV/TXT格式文件。
以下是一些提示:
对于 csv 或 txt 文件,列之间的分隔符为 TAB。
第一行必须是列标题。
列标题必须是有意义的术语,以便我们的大语言模型能够理解。 列举一些同义词时最好使用斜杠'/'来分隔,甚至更好 使用方括号枚举值,例如 'gender/sex(male,female)'.
以下是标题的一些示例:
供应商/供货商'TAB'颜色(黄色、红色、棕色)'TAB'性别(男、女)'TAB'尺码(M、L、XL、XXL)
姓名/名字'TAB'电话/手机/微信'TAB'最高学历(高中,职高,硕士,本科,博士,初中,中技,中 专,专科,专升本,MPA,MBA,EMBA)
表中的每一行都将被视为一个块。

"Paper" 分块方法说明
仅支持PDF文件。
如果我们的模型运行良好,论文将按其部分进行切片,例如摘要、1.1、1.2等。
这样做的好处是LLM可以更好的概括论文中相关章节的内容, 产生更全面的答案,帮助读者更好地理解论文。 缺点是它增加了 LLM 对话的背景并增加了计算成本, 所以在对话过程中,你可以考虑减少‘topN’的设置。

"Book" 分块方法说明
支持的文件格式为DOCX、PDF、TXT。
由于一本书很长,并不是所有部分都有用,如果是 PDF, 请为每本书设置页面范围,以消除负面影响并节省分析计算时间。

"Laws" 分块方法说明
支持的文件格式为DOCX、PDF、TXT。
法律文件有非常严格的书写格式。 我们使用文本特征来检测分割点。
chunk的粒度与'ARTICLE'一致,所有上层文本都会包含在chunk中。
 

<think>嗯,用户想了解RAGFlow中的分块模板功能和用法。首先,我需要回忆一下之前看到的引用内容,尤其是引用3提到在ragflow-main/rag/app/paper.py中,有关于pdf处理和chunk的实现,侧重OCR方法和文本解析器。这说明分块模板可能和如何处理不同格式的文档有关。 接下来,用户需要的是具体功能和使用说明分块模板的作用应该是定义如何将文档分割成块,可能包括分块规则、元数据提取等。引用2提到RAGFlow支持多种数据源,比如Word、Excel、图像等,所以分块模板可能需要适应不同格式,比如PDF可能需要OCR,而文本文件可能直接分块。 然后,分块模板的结构可能有参数如块大小、重叠、分块依据(段落、句子等),以及如何处理表格或图片。引用3中的chunk侧重文本解析器,可能涉及这些参数的配置。此外,元数据提取比如作者、标题,可能也是分块模板的一部分。 使用说明方面,用户可能需要知道如何配置模板,比如通过配置文件或界面设置参数。引用1提到RAGFlow提供直观的API,可能配置模板也需要通过API或特定配置文件。另外,不同的文档类型可能需要不同的模板,比如扫描件用OCR模板,结构化数据用表格模板。 还要考虑用户可能遇到的问题,比如分块过大或过小的影响,如何处理特殊格式。可能需要解释参数调整的建议,比如块大小根据模型上下文长度调整,重叠部分减少信息丢失。引用4提到启动问题,但这里可能不相关。 总结,回答需要涵盖分块模板的核心功能、参数说明、配置方式、应用场景以及最佳实践。同时,生成相关问题时,可以涉及参数调优、特殊格式处理、性能影响等。</think>### RAGFlow分块模板功能解析 RAGFlow分块模板是文档预处理的核心功能模块,主要用于定义如何将不同格式的原始文档切分为可处理的语义单元,同时提取结构化元数据[^3]。以下为具体功能说明和使用方法: #### 一、核心功能 1. **格式适配分块** - 支持$PDF$扫描件(OCR解析)、$Word$文档(段落标记识别)、$Excel$表格(行列结构保持)等差异化解构 - 示例代码片段: ```python # 基于PDF的分块处理逻辑 def pdf_chunker(file): apply_ocr_if_scanned(file) # 对扫描件执行OCR extract_text_blocks(file) # 识别文本段落 return semantic_chunks ``` 2. **参数化分块控制** - `chunk_size`: 定义单块最大token数(默认值$512$) - `overlap`: 设置块间重叠比例(推荐值$10\%$) - `split_by`: 指定分割依据(段落/句子/自定义标记) 3. **元数据增强** - 自动提取文档属性如$author$(作者)、$create_time$(创建时间)、$section_title$(章节标题) - 添加文件指纹$doc_hash=SHA256(file_content)$用于版本追踪 #### 二、使用说明 1. **模板配置** ```yaml chunk_template: document_type: technical_paper chunk_strategy: split_by: "section" # 按章节划分 max_length: 1024 # 学术论文适用较大块 metadata_extraction: - field: equations # 提取数学公式 xpath: //math[@alttext] - field: citations # 提取参考文献 pattern: \b\d{4}\s[A-Z]+\b ``` 2. **格式特化处理** - **扫描件模板**:启用$Tesseract OCR$引擎,配置$PSM=6$(假设统一文本方向) - **代码文档**:设置$code_block_detection=True$保留缩进结构 - **法律合同**:采用$clause_level_split$条款级分割策略 3. **质量验证** - 通过$$Jaccard\_similarity = \frac{|A \cap B|}{|A \cup B|}$$评估块间信息重叠度 - 使用$ROUGE-L$分数检测关键信息丢失情况 #### 三、最佳实践 1. 金融报告处理:采用$table_aware$模式,保持表格数据完整性[^2] 2. 医疗文献处理:配置$medical_ner=True$激活专业实体识别 3. 多语言文档:设置$lang_detect_threshold=0.8$触发自动语言切换 [^1]: RAGFlow支持配置不同的LLM和嵌入模型,提供多重召回和融合重排序 : 分块实现涉及文本解析器和OCR处理逻辑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值