1221. 四平方和(二分查找)

这篇博客探讨了如何利用二分搜索算法将一个时间复杂度为O(n^3)的三重循环解决方案优化到O(n^2logn)。作者首先展示了一个原始的三重循环实现,然后提出了一种改进方法,通过排序和二分搜索减少查找时间,提高了算法效率。这种方法对于处理大规模数据时尤其有效。
摘要由CSDN通过智能技术生成

 

二分搜索的思想来优化 

O(n^3) 

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 10005;
int k[N];
int binary_search(int x)
{
	int l = 0, r = 10000;
	while (l < r)
	{
		int mid = l + r >> 1;
		if (mid * mid < x)
			l = mid + 1;
		else if (mid * mid == x)
			return mid;
		else if (mid * mid > x)
			r = mid;
	}
	return -1;
}
int main()
{
	int n;
	cin >> n;
	//n^3 logn
	int kk = 0;
	for(int i=0;i*i<=n;i++)
		for(int j=0;j*j<=n;j++)
			for (int k = 0;k * k <= n;k++)
			{
				int x = n - i * i - j * j - k * k;
				int kk = binary_search(x);
				if (kk == -1) continue;
				else
				{
					cout << i << ' ' << j << ' ' << k << ' ' << kk;
					exit(0);
				}
			}
	return 0;
}

O(n^2log n)

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 2500100;    //记得开大一点,否则答案会出错
 //因为按照data排序后,可能0 4000 这个数在很后面,数组越界+wa
struct p
{
	int x, y;
	int data;
	bool operator <(const p& b)const
	{
		if (data == b.data)
			return x < b.x ? true : false;
		return data < b.data ? true : false;
	}
}k[N];
int cnt = 0;
//返回下标
int Binary_search(int c)
{
	int l = 0, r = cnt - 1;
	while (l < r)
	{
		int mid = l + r >> 1;
		if (k[mid].data < c)
			l = mid + 1;
		if (k[mid].data >= c)
			r = mid;
	}
	return k[l].data == c ? l : -1;
}
int main()
{
	int n;
	cin >> n;
	for(int i=0;i * i <=n;i++)
		for (int j = i;j * j+i*i<= n;j++)
		{
			k[cnt++] = { i,j,i * i + j * j };
		}
	sort(k, k + cnt);
	for (int i = 0;i * i <= n;i++)
		for (int j = 0;j * j+ i*i <= n;j++)
		{
			int c = n - i * i - j * j;
			int l = 0, r = cnt - 1;
			while (l < r)
			{
				int mid = l + r >> 1;
				if (k[mid].data < c)
					l = mid + 1;
				if (k[mid].data >= c)
					r = mid;
			}
			if (k[l].data != c) continue;
			int x = k[l].x;
			int y = k[l].y;
			cout << i << ' ' << j << ' ' << x << ' ' << y << ' ';
			exit(0);
		}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值