327. 玉米田 (棋盘状压dp)

分析

限制条件:由于不能有公共边缘,并且只有在肥沃的土地上才可以种植,那么必须满足下面三种限制条件

  • 只能在肥沃的土地上种  不能 x>>i&1 &&  a[i][line]==0
  • 同一列  不能连续种植    不能 x>>i&1 x>>i+1&1   
  • 同一行  不能连续种植     a&b==0

 

初始化:0

 边界:dp[0][0]=1

比较直观的is_valid()方法

#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N=13,M=1<<N;
const int mod=1e8;
int n,m;
int a[N][N];
int dp[N][M];
vector<int> state;
bool check(int x)
{
    for(int i=0;i<n;i++)
        if((x>>i&1)&&(x>>(i+1)&1)) return false;
    
    return true;
}

bool is_valid(int x,int line)
{
    for(int i=0;i<n;i++)
        if(x>>i&1 && a[i][line]==0)
            return false;
    return true;
}

int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
        for(int j=1;j<=m;j++)
            cin>>a[i][j];
    
    for(int i=0;i<1<<n;i++)
        if(check(i))
            state.push_back(i);
    
    dp[0][0]=1;
    
    for(int i=1;i<=m+1;i++)
        for(int j=0;j<state.size();j++)
            for(int k=0;k<state.size();k++)
            {
                int a=state[j],b=state[k];
                if(is_valid(a,i)&&(a&b)==0)
                    dp[i][a]=(dp[i][a]+dp[i-1][b])%mod;
            }
    cout<<dp[m+1][0]<<endl;
    return 0;
}

二进制存储土地状态的方法

#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N=14,M=1<<N;
const int mod=1e8;
int n,m;
int g[M];
int dp[N][M];
vector<int> state;
bool check(int x)
{
    for(int i=0;i<m;i++)
        if((x>>i&1)&&(x>>(i+1)&1)) return false;
    
    return true;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        for(int j=0;j<m;j++)
        {
            int a;
            cin>>a;
            g[i]+=(a==0)?1<<j:0;
        }
        
    for(int i=0;i<1<<m;i++)
        if(check(i))
            state.push_back(i);
    
    dp[0][0]=1;
    for(int i=1;i<=n+1;i++)
        for(int j=0;j<state.size();j++)
            for(int k=0;k<state.size();k++)
            {
                int a=state[j],b=state[k];
                if((a&b)==0&&(g[i]&a)==0)
                    dp[i][a]=(dp[i][a]+dp[i-1][b])%mod;
            }
    cout<<dp[n+1][0];
    return 0;
}

import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.image import ImageDataGenerator # 设置随机种子,保证结果可复现 tf.random.set_seed(42) # 定义数据生成器 datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2) # 设置数据目录 train_dir = 'train_directory' test_dir = 'test_directory' # 从数据目录加载数据 train_generator = datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='categorical', subset='training' ) validation_generator = datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='categorical', subset='validation' ) # 定义模型 model = keras.Sequential([ keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)), keras.layers.MaxPooling2D(2, 2), keras.layers.Conv2D(64, (3, 3), activation='relu'), keras.layers.MaxPooling2D(2, 2), keras.layers.Conv2D(128, (3, 3), activation='relu'), keras.layers.MaxPooling2D(2, 2), keras.layers.Flatten(), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(4, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_generator, epochs=10, validation_data=validation_generator) # 评估模型 test_generator = datagen.flow_from_directory( test_dir, target_size=(150, 150), batch_size=32, class_mode='categorical' ) results = model.evaluate(test_generator) print('测试集准确率:', results[1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值