牛客寒假训练营 4 G(枚举优化,欧拉降幂)

由于是子序列问题,可以发现对于每个元素有两种选择,选或者不选

所以一共可能有2^n种子序列,如果枚举所有的区间,并找出他们的最大值最小值,时间复杂度是O(n*2^n)

因为每个区间只有最大值和最小值被使用到,所以我们只需要枚举最大值最小值就可以了,同时我们发现由于是子序列,不需要在意他的位置,因为作为最值位置可以任意,所以可以进行排序

那么对于每一个点来说,有作为最大值的所有情况和作为最小值的所有情况,因为是乘积,就可以单枚举出他作为最大值的次数 p,得到a[i]^{2^p}和作为最小值的次数q,得到a[i]^{2^q},而不用在意与他匹配的另一个最值是多少

由于 2^p 和 2^q 作为次幂的时间复杂度太高了,所以需要采用欧拉降幂

数论---欧拉定理,快速幂求逆元_qq12323qweeqwe的博客-CSDN博客

由于费马小引理:

内容:存在质数p,a与p互质 a^{f(p)}=1(mod p) == a^{p-1} =1 (mod p)

那么 q == (p-1)u +v , 由于 a^(p-1)u ==1,所以剩下来一个 a^v,所以我们只需要对 a的次幂取一个模,就可以达到降幂的效果了

总结

  • 题目的性质,子序列+最值,发现不需要在意元素的位置,可以进行升序排序
  • 一个数位置i,作为最小值的情况 2^{i-1} 作为最大值的情况 2^{n-i}
  • 一个数需要的乘积 a[i]^{2^i+2^n-i},进行欧拉降幂
#include <iostream>
#include <algorithm>
using namespace std;
const int N=2e5+10;
const int mod=1e9+7;
int a[N];
typedef long long ll;
ll qmi(ll a,ll b,ll mod)
{
	ll res=1;
	while(b)
	{
		if(b&1)
			res=res*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return res;
}

int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	ll res=1;
    sort(a+1,a+1+n);    //需要对序列进行重排
	for(int i=1;i<=n;i++)
	{
		//作为最小值的情况
		res=res*qmi(a[i],qmi(2,i-1,mod-1)+qmi(2,n-i,mod-1),mod)%mod;
	}
	cout<<res;
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值