HashMap1.8与1.7的底层有很⼤的区别
1.8 底层是数组+链表+红⿊树 (链表采⽤尾插法)
1.7 底层是数组+链表 (链表使⽤头插法,可能出现死循环)
HashMap的默认⻓度为16,加载因⼦为0.75,扩容为2的倍数
HashMap1.8的结构示意图
HashMap1.8的key的Hash计算⽅法
static final int hash(Object key) {
int h;
//根据下面的代码可以知道HashMap允许key为null,当key为null的时候存放在数组下标为
//将key的hash值向右移动16位,然后再与key的hash做或操作,这样可以保证高16位不变
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
HashMap1.8的put⽅法
package cn.wps.solution.demo.entity;
public class Test {
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
2boolean evict) {
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
//判断数组是否为空,如果为空则进行扩容操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//判断tab[index]是否为空,如果为空则表明没有hash冲突,直接创建心得node节点进行赋
//(n-1)是数组的长度减一,数组的长度为默认16,减一的目的是为了在与key的hash进行与
if ((p = tab[i = (n - 1) & hash]) == null)
//创建新的节点放在tabel数组i的位置,并且node的下一个节点为null
tab[i] = newNode(hash, key, value, null);
//如果发生hash冲突
else {
Node<K, V> e;
K k;
//判断是否为同一个key,如果为同一个,则直接将下标为i的node赋值给e,进行新值替换
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//判断p的类型是否为红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
else {
//对i节点下的链表进行循环
for (int binCount = 0; ; ++binCount) {
//如果p的下一个节点为空,则表示链表只有一个节点,直接赋值就行
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//判断链表的长度是否等于8,如果是则将链表转换为红黑树
//链表变为红黑树的条件,链表的长度大于等于8并且数组的容量大于等
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//判断key是否相等,相等则直接赋值并退出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//修改
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//modCount只有在添加元素的时候进行加一操作,其作用是防止多个线程对HashMap进行循环
++modCount;
//判断是否需要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
}
HashMap的扩容
final Node<K, V>[] resize() {
Node<K, V>[] oldTab = table;
//记录老的数组长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//记录老的扩容容量
int oldThr = threshold;
//newCap新的数组长度,newThr新的扩容容量
int newCap, newThr = 0;
if (oldCap > 0) {
//如果数组长度大于等于最大的数组长度,什么都不做直接返回
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//计算新的数组长度和新的扩容容量
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//oldThr << 1相当于oldThr*2
newThr = oldThr << 1; // double threshold
} else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {
//创建默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float) newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY
( int)ft:
Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes", "unchecked"})
Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
table = newTab;
//说明table需要扩容了 扩容的时候先循环table,然后再循环table每个节点下的链表
if (oldTab != null) {
//循环table
for (int j = 0; j < oldCap; ++j) {
//将每个节点下的链表先赋值给e,然后都去操作e,这样可以避免多个线程进行扩容
Node<K, V> e;
//判断j下是否存在链表
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
//将节点e重新放入新的table的index下标
newTab[e.hash & (newCap - 1)] = e;
//判断e的类型是否为红黑树
else if (e instanceof TreeNode)
((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
//这里的操作是,将j下标的链表进行拆分成两个链表,然后将两个链表重新存
else { // preserve order
Node<K, V> loHead = null, loTail = null;
Node<K, V> hiHead = null, hiTail = null;
Node<K, V> next;
do {
next = e.next;
//e.hash & oldCap只能是0或非0的情况这样就可以将链表进行拆
if ((e.hash & oldCap) == 0) {
//根据下面的操作可知链表使用了尾插法
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
} else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
//直接将链表放入新的table的j的下标
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap的get⽅法
public V get(Object key) {
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//获取node
final Node<K, V> getNode(int hash, Object key) {
Node<K, V>[] tab;
Node<K, V> first, e;
int n;
K k;
//首先判断tabel不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 这里首先判断 hash 表的第一个节点,节省查询时间,以及对 key 为 null 的情况进行处理
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 这里判断当前节点是链表还是红黑树
if (first instanceof TreeNode)
return ((TreeNode<K, V>) first).getTreeNode(hash, key);
do {
// 循环遍历当前节点下的链表然后匹配 key 以及 key 的 hash
if (e.hash == hash &&
19 ((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}