【归并排序学习记录】

归并排序是一种稳定的分治排序算法,它通过递归将数组分割、排序并合并,保证相同值元素的顺序不变。时间复杂度为O(nlogn),适用于大规模数据,但空间复杂度较高且非原地,可能导致内存限制和小规模数据性能不佳。
摘要由CSDN通过智能技术生成

算法描述

归并排序(Merge Sort)是一种常见的排序算法,它采用分治法的思想,将一个大的问题划分为小的子问题,然后逐个解决这些子问题,最后将它们合并在一起,从而得到整体的有序序列。

  • 算法稳定性

归并排序是一种稳定的排序算法。稳定性是指如果在原始数据中存在相同值的元素,并且它们的顺序在排序后仍然保持不变,那么排序算法就是稳定的。
归并排序的稳定性可以从其合并过程中的规则得以解释。在归并排序中,当需要合并两个子数组时,如果遇到相同的元素,通常会将来自第一个子数组的元素优先放入结果数组,这就确保了相同元素的相对顺序保持不变。只有当第一个子数组中的元素小于第二个子数组中的元素时,才会放入第一个子数组中的元素。这意味着相同值的元素在排序后仍然保持原始顺序。
由于归并排序的合并操作非常稳定,因此它是一种稳定的排序算法。这是归并排序与某些其他排序算法(如快速排序)的一个重要区别,后者在不特别处理的情况下可能会打破相同值元素的原始顺序。所以,如果你需要保持相同值元素的相对顺序,归并排序是一个不错的选择。

  • 详细流程
  1. 分解(Divide):将待排序的数组划分为两个较小的子数组,通常是将数组一分为二。这一步骤是递归的,继续将子数组分解成更小的子数组,直到每个子数组都只包含一个元素,因为单个元素的数组被认为是已排序的。
  2. 解决(Conquer):对每个子数组进行排序。通常,这一步骤也采用递归来实现。如果数组只包含一个元素,那么它已经是有序的;否则,对子数组继续进行分解和排序,直到所有子数组都有序。
  3. 合并(Merge):将已经排好序的子数组合并成一个更大的有序数组。这是归并排序的核心操作。在合并过程中,从两个子数组的开头开始,比较元素大小,并按顺序将较小的元素依次放入新的数组中,然后将指针向后移动,直到一个子数组中的所有元素都已经放入新数组。最后,将剩余的元素从另一个子数组拷贝到新数组。
  4. 重复(Recursion):重复步骤1和步骤2,直到所有的子数组都已排序并合并。这是一个递归的过程,因为在每次合并步骤中,会再次执行分解和解决步骤,直到所有的子数组都是单元素数组。
  5. 合并完成:最终,当所有的子数组都合并到一个数组中时,整个数组就是有序的。

时间复杂度

归并排序的关键在于合并操作,它确保了将两个已排序的子数组合并成一个有序数组的正确性。由于分治法的思想,归并排序具有稳定性和较好的时间复杂度(O(n log n)),适用于各种排序问题,特别是对于大规模数据集。

算法示例

带排序数组:[38, 27, 43, 3, 9, 82, 10]

  1. 初始状态:整个数组被看作一个未排序的序列。
[38, 27, 43, 3, 9, 82, 10]
  1. 分解(Divide):首先将数组分成两个大致相等的子数组。
[38, 27, 43][3, 9, 82, 10]
  1. 递归排序(Conquer):对这两个子数组分别应用归并排序,重复这个过程,直到每个子数组只包含一个元素。
[38][27, 43]
[27][43]
[3][9, 82, 10]
[9][82, 10]
[82][10]
  1. 合并(Merge):现在开始将这些单元素子数组合并成有序的数组。合并是归并排序的核心操作。
合并 [27][43],得到 [27, 43]
合并 [38][27, 43],得到 [27, 38, 43]
合并 [9][10, 82],得到 [9, 10, 82]
合并 [27, 38, 43][9, 10, 82],得到 [9, 10, 27, 38, 43, 82]
  1. 重复递归与合并:重复步骤3和步骤4,直到最终合并得到一个有序的完整数组。
[3, 9, 10, 27, 38, 43, 82]

这就是归并排序的示例过程。通过递归地分解、排序和合并,最终得到一个完全有序的数组。

java代码实现

public class MergeSort {
    public static void mergeSort(int[] arr) {
        if (arr == null || arr.length <= 1) {
            return; // 不需要排序
        }
        int[] aux = new int[arr.length]; // 辅助数组用于合并过程
        mergeSort(arr, aux, 0, arr.length - 1);
    }

    private static void mergeSort(int[] arr, int[] aux, int low, int high) {
        if (low < high) {
            int mid = (low + high) / 2;
            mergeSort(arr, aux, low, mid); // 左半部分排序
            mergeSort(arr, aux, mid + 1, high); // 右半部分排序
            merge(arr, aux, low, mid, high); // 合并左右两部分
        }
    }

    private static void merge(int[] arr, int[] aux, int low, int mid, int high) {
        // 将arr[low...mid]和arr[mid+1...high]合并成一个有序数组
        for (int k = low; k <= high; k++) {
            aux[k] = arr[k];
        }

        int i = low, j = mid + 1;
        for (int k = low; k <= high; k++) {
            if (i > mid) {
                arr[k] = aux[j++];
            } else if (j > high) {
                arr[k] = aux[i++];
            } else if (aux[i] <= aux[j]) {
                arr[k] = aux[i++];
            } else {
                arr[k] = aux[j++];
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {38, 27, 43, 3, 9, 82, 10};
        System.out.println("Original array: " + Arrays.toString(arr));
        mergeSort(arr);
        System.out.println("Sorted array: " + Arrays.toString(arr));
    }
}

总结

  • 优点
    1. 稳定性:归并排序是一种稳定的排序算法,它能够保持相同值元素的相对顺序不变,这对某些应用非常重要。
    2. 时间复杂度:归并排序的时间复杂度为 O(n log n),其中 n 是要排序的元素个数。这意味着它在大多数情况下具有较好的性能,特别适用于大规模数据集的排序。
      适应性:归并排序对于不同的数据分布情况表现稳定。无论数据是随机分布还是部分有序,归并排序的时间复杂度仍然是 O(n log n)。
    3. 分治思想:归并排序采用分治法的思想,将问题划分为小的子问题,然后逐个解决这些子问题,最后将它们合并在一起,这使得算法的理解和实现相对容易。
    4. 不依赖于输入数据顺序:归并排序的性能不依赖于输入数据的初始顺序,这使得它在实际应用中更加可靠。
  • 缺点
    1. 空间复杂度:归并排序需要额外的内存空间来存储子数组,其空间复杂度为 O(n),这在对内存要求非常严格的环境下可能成为一个问题。
    2. 非原地排序:归并排序不是原地排序算法,因为它需要额外的存储空间来保存子数组。这意味着在排序大型数据集时,需要更多的内存。
    3. 常数因子较大:归并排序的实际运行时间可能会比一些原地排序算法(如快速排序)长,因为它的常数因子较大。这在小规模数据集上可能表现不佳。
    4. 迭代实现复杂:尽管归并排序的递归实现相对简单,但迭代实现要复杂一些,因为需要维护合并的迭代顺序。

总的来说,归并排序是一种可靠且通用的排序算法,特别适用于大规模数据集的排序需求。它的稳定性和可预测性使其成为一种常用的排序算法,但在内存限制和性能要求非常严格的情况下,可能会选择其他排序算法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沂蒙山旁的水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值