张大哥笔记:跨境电商培训诈骗套路解析?

看到一则关于跨境电商的新闻,给大家分享一下,不要上当被骗了!

这次被武汉警方打掉的是一个以“高效代运营”为服务内容的跨境电商公司,我们来看一下这家公司是怎么操作的:

首先,这家公司先在各大短视频平台上开设直播课堂,主打的说辞就是“零基础也能开店”、“宝妈在家里也能赚钱”、“轻松赚美元避开内卷”,总之就是一些非常有诱惑力的话,吸引想快速赚钱的小白上勾!

当你进入她们的直播间以后,里面100个人中,起码有95个都是托,而目标客户就是剩下的那5个。

这些花钱雇来的“托”,会不断在公屏上留言,说自己在这个公司的指导下,赚了多少多少钱、跨境利润真不错,等等此类的话术。

这个时候,如果你心动,那就算是正式上钩了。

下一步,会有专门的客服来跟你对接,对接的目的就是说服你购买她们价格高达2万元的代运营和培训服务。

而这仅仅是骗你交钱的第一步。

当你教了2万以后,过段时间你会发现,对方在之前承诺的高额回报并未出现,交钱之前的说辞完全是骗人的。

这个时候,对方又开始了另一轮忽悠,她们会再次劝说你购买“无人直播”的技术培训内容,然后引诱你去到一个虚假的电商平台上开店。

这些假冒的电商平台往往做的非常逼真,不懂行的新手往往很难分辨真假。

把你骗到这些平台之后,对方会再次雇佣大量的托,去购买你的产品,给你造成顺利出单的假象

而这一切的目的,就是想让你加大在这个平台上的进货量和投资额。

最后的最后,就是你发现了这些都是虚幻的,都是骗人的,但是你的钱都已经进到了骗子的腰包里。

而骗子们在收到了大量的投诉之后,继续换一家公司、换个马甲,继续这一套诈骗流程。

看一下极目新闻提供的现场图片。(图片来源:极目新闻)

图片

培训,知识付费并不是法外之地,虽然知识是无价,但是知识付费以及培训,需要合法合规。

图片

在上述案情中,犯罪嫌疑人伪造了名师身份,以及用技术手段制造了大量“网友”,外加以刷单的方式,欺骗被害人让其感觉培训有效果与价值,从而达到了非法占有被害人财物的目的,是典型的诈骗行为。

这里忠告各位做跨境电商以及知识付费还有培训相关从业者:

1,知识或者培训产品宣传,不能过度宣传,以及承诺回报。

2,课程要与宣传内容相符。

3,最重要的也就是不管你的知识还是培训产品定价多少,最后涉案金额是按照累计金额计算。

任何行业,哪怕是再赚钱的行业,都不可能保证所有人都能赚到钱。

但凡是只跟你说美好前景,不跟你提风险的,基本都是想从你身上赚钱。

记住这一点,你就永远不会被骗。

### 关于跨境电商笔记与资料 #### 跨境电商市场规模与发展趋势 近年来,随着互联网技术的发展以及全球化的推进,跨境电商成为国际贸易的重要组成部分。数据显示,自2013年起至2021年期间,中国的跨境电商市场交易规模持续增长,每年增长率均保持在15%以上[^1]。即便受到疫情的影响,这一行业的扩张势头依然强劲,预计到2022年,跨境电商市场的交易规模仍将以超过10%的速度继续扩展。 #### 主要跨境电商平台介绍 在全球范围内,多个知名电商平台推动了跨境电商业务的成长。例如,在印度市场上,Flipkart作为该国最大的电子商务零售商之一,不仅提供自营商品销售服务(如书籍和电子设备),同时也通过其在线市场功能支持第三方商家入驻并售卖各自的产品[^2]。这种模式极大地丰富了可供消费者选择的商品种类,并促进了整个生态系统的健康发展。 #### 数据驱动下的营销策略优化 对于从事跨境电商的企业而言,利用数据分析来指导决策变得越来越重要。许多主流平台提供了详尽的数据监控工具,能够帮助卖家追踪诸如访问量、平均订单价值(即客单价)及转换效率等关键指标的表现情况。借助这些信息,企业可以迅速调整自己的推广计划以达到最佳效果;比如针对特定时间段内的表现不佳之处作出改进措施或是强化那些已经取得良好成效的部分[^3]。 ```python import pandas as pd def analyze_sales_data(sales_df): """ 对销售数据进行基本分析 参数: sales_df (pd.DataFrame): 销售数据表, 包含列 'traffic', 'conversion_rate', 和 'average_order_value' 返回: dict: 各项统计汇总结果 """ summary = { "total_traffic": sum(sales_df['traffic']), "avg_conversion_rate": round(sum(sales_df['conversion_rate']) / len(sales_df), 2), "overall_average_order_value": round(sum(sales_df['average_order_value'] * sales_df['traffic']) / sum(sales_df['traffic']), 2) } return summary # 示例调用函数 data = {'traffic': [1000, 2000], 'conversion_rate': [0.05, 0.07], 'average_order_value': [50, 60]} df = pd.DataFrame(data) result = analyze_sales_data(df) print(result) ``` 上述Python脚本展示了如何基于给定参数计算总流量、平均转化率以及整体平均订单金额的基础方法论框架。这有助于理解不同变量间的关系从而制定更有效的业务战略方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值