目录
1. 复数及其运算
(1)复数的表示形式
- 代数式:
- 三角式:
- 指数式:
- 极坐标式:
三角式和指数式可以通过欧拉方程转换。
(2)复数的基本运算
加减
实部和实部相加/减,虚部和虚部相加/减
设:;
则:
乘除
乘:模相乘,角度相加
,
除:模相除,角度相减
微分
理解成:一个本来在实轴为“1”的线段,每次乘j则逆时针旋转90°,两次旋转就是180°,变成了“-1”
微分
积分
2. 正弦量的相量表示法
正弦量和相量的一一对应关系
相量特指与正弦量具有一一对应关系的复数。
正弦量的最大值对应复数A的模值;
正弦量的初相与复数A的幅角相对应;
正弦量的角频率对应复数A绕轴旋转的角速度;
实质:用复数表示正弦量。
正弦量的表示
把表示正弦量的复数称相量,并在大写字母上打“ · ”。
符号说明
相量图
把相量表示在复平面的图形
一般不画坐标轴
只有同频率的正弦量才能画在一张相量图上, 不同频率不行。
练习
写出正弦函数对应的相量
相量利用复数进行运算
在复数运算当中,一定要根据复数所在象限正确写出幅角的值