【笔记】正弦量的相量表示

目录

1. 复数及其运算

(1)复数的表示形式

(2)复数的基本运算

加减

乘除

微分

积分

2. 正弦量的相量表示法

正弦量和相量的一一对应关系

正弦量的表示

符号说明

相量图

练习

写出正弦函数对应的相量

相量利用复数进行运算


1. 复数及其运算

(1)复数的表示形式

  1. 代数式:A=a+bj
  2. 三角式:A=rcos\varphi +jrsin\varphi=(cos\varphi +jsin\varphi)r
  3. 指数式:A=re^{j\varphi}
  4. 极坐标式:A=r\angle{\varphi}

三角式和指数式可以通过欧拉方程e^{j\varphi}=cos\varphi+jsin\varphi转换。

(2)复数的基本运算

加减

实部和实部相加/减,虚部和虚部相加/减

设:A=a_1+jb_1;B=a_2+jb_2

则:A\pm B=(a_1\pm a_2)+j(b_1\pm b_2)

乘除

乘:模相乘,角度相加

A=r_1e^{j\varphi_1},B=r_2e^{j\varphi_2}

A\cdot B=r_1e^{j\varphi_1}\cdot r_2e^{j\varphi_2}=r_1r_2e^{j(\varphi_1+\varphi_2)}

A\cdot B=r_1\angle \varphi_1\cdot r_2\angle \varphi_2=r_1r_2\angle (\varphi_1+\varphi_2)

除:模相除,角度相减

A/B=\frac{r_1e^{j\varphi_1}}{r_2e^{j\varphi_2}}=\frac{r_1}{r_2}e^{j(\varphi_1-\varphi_2)}

A/B=\frac{r_1\angle \varphi_1}{r_2\angle \varphi_2}=\frac{r_1}{r_2}\angle (\varphi_1-\varphi_2)

微分

j\cdot ·j =-1

j = 1\angle90^{\circ} 

理解成:一个本来在实轴为“1”的线段,每次乘j则逆时针旋转90°,两次旋转就是180°,变成了“-1”

微分

积分

2. 正弦量的相量表示法

正弦量和相量的一一对应关系

相量特指与正弦量具有一一对应关系的复数。

正弦量的最大值对应复数A的模值;

正弦量的初相与复数A的幅角相对应;

正弦量的角频率对应复数A绕轴旋转的角速度;

实质:用复数表示正弦量。

正弦量的表示

把表示正弦量的复数称相量,并在大写字母上打“ · ”。

符号说明

相量图

把相量表示在复平面的图形

一般不画坐标轴

只有同频率的正弦量才能画在一张相量图上, 不同频率不行。

练习

写出正弦函数对应的相量

相量利用复数进行运算

在复数运算当中,一定要根据复数所在象限正确写出幅角的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值