android 保持session

public class HttpUtil {

    public static String httpGet(String url, String param)
            throws Exception {
        String result = "";
        if (param != null && !param.equals("")) {
            if (url.indexOf("?") < 0) {
                url += "?" + param;
            } else {
                url += "&" + param;
            }
        }
        HttpGet httpGet = new HttpGet(url);

        BasicHttpParams httpParams = new BasicHttpParams();
        HttpConnectionParams.setSoTimeout(httpParams, 30 * 1000);
        HttpConnectionParams.setConnectionTimeout(httpParams, 30 * 1000);
        HttpConnectionParams.setTcpNoDelay(httpParams, true);
        HttpConnectionParams.setSocketBufferSize(httpParams,
                8192);

        HttpProtocolParams.setVersion(httpParams, HttpVersion.HTTP_1_1);
        HttpProtocolParams.setUserAgent(httpParams, "Chlient");

        HttpClient httpClient = new DefaultHttpClient(httpParams);
        httpGet.addHeader("Content-Type", "application/x-www-form-urlencoded");
        if (SysConstant.cookie.length()>0) {
            httpGet.setHeader("Cookie", "JSESSIONID=" + SysConstant.cookie);
        }
        try {
            HttpResponse response = httpClient.execute(httpGet);
            if (response.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
                result = EntityUtils.toString(response.getEntity(), "UTF-8");
                List<Cookie> cookies = ((DefaultHttpClient)httpClient).getCookieStore().getCookies();
                for(Cookie cookie : cookies){
                    if("JSESSIONID".equals(cookie.getName())){
                        SysConstant.cookie = cookie.getValue();
                    }
                }
            }
        } catch (Exception e) {
            throw new Exception(e);
        } finally {
            httpGet.abort();
            httpClient = null;
        }
        return result;
    }
    
    public static String post(String url, Map<String,String> param) {
        String result="";
        // POST方式
        HttpPost httppost = new HttpPost(url);
        BasicHttpParams httpParams = new BasicHttpParams();
        HttpConnectionParams.setSoTimeout(httpParams, 30 * 1000);
        HttpConnectionParams.setConnectionTimeout(httpParams, 30 * 1000);
        HttpConnectionParams.setTcpNoDelay(httpParams, true);
        HttpConnectionParams.setSocketBufferSize(httpParams,
                8192);

        HttpProtocolParams.setVersion(httpParams, HttpVersion.HTTP_1_1);
        HttpProtocolParams.setUserAgent(httpParams, "Chlient");
        HttpClient httpClient = new DefaultHttpClient(httpParams);
        httppost.addHeader("Content-Type", "application/x-www-form-urlencoded");
        if (SysConstant.cookie.length()>0) {
            httppost.setHeader("Cookie", "JSESSIONID=" + SysConstant.cookie);
        }
        // 申明键值对集合
        List<NameValuePair> params = new ArrayList<NameValuePair>();
        for (Map.Entry<String, String> entry : param.entrySet()) {
            params.add(new BasicNameValuePair(entry.getKey().toString(),
                    entry.getValue().toString()));
        }
        // 具体流程
        try {
            httppost.setEntity(new UrlEncodedFormEntity(params, "UTF-8"));
            //执行post请求体
            HttpResponse response = httpClient.execute(httppost);
            if (response.getStatusLine().getStatusCode() == 200) {// 正常返回200状态码
                result = EntityUtils.toString(response.getEntity());
                List<Cookie> cookies = ((DefaultHttpClient)httpClient).getCookieStore().getCookies();
                for(Cookie cookie : cookies){
                    if("JSESSIONID".equals(cookie.getName())){
                        SysConstant.cookie = cookie.getValue();
                    }
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return result;
    }
}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值