自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 独热编码通俗理解和实例

独热编码主要用于分类问题上,对类别的特征进行归一化处理,比如性别,学历等,编码原理简单来说就是根据特征所包含的类别个数重新构造特征, 比如性别有男和女,那么新构造的特征就会有两种结果,性别—男、性别—女,与原数据相比,对应位置上相同为1,否则为零。 比如:性别=[男,男,女,男] 性别-男=[1,1,0,1] 性别-女=[0,0,1,0] 这时就会增加数据维度,所以下一步就需要对数据进行

2017-11-15 09:32:53 3522 1

原创 XGBOOST与GBDT的最大区别

XGBOOST是利用特征去进行分类,每构建一棵树时,都是先遍历当前每一个特征,计算每个特征的最大增益,以增益增大点作为树的优先分裂点, 一直分裂下去,直到产生负值,这就构造成功一棵树。利用剩下的特征继续下一棵树的构造,每次构造树的方法都是相同,直到遍历完所有的特征, 这时每个样本的值为每颗树上对应样本所得分数之和。 GBDT采用的是残差构造树的方法,即利用上一棵树所得的预测值与真实值的残差作

2017-11-09 09:55:33 235

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除