XGBOOST与GBDT的最大区别

XGBOOST是利用特征去进行分类,每构建一棵树时,都是先遍历当前每一个特征,计算每个特征的最大增益,以增益增大点作为树的优先分裂点,

一直分裂下去,直到产生负值,这就构造成功一棵树。利用剩下的特征继续下一棵树的构造,每次构造树的方法都是相同,直到遍历完所有的特征,

这时每个样本的值为每颗树上对应样本所得分数之和。

GBDT采用的是残差构造树的方法,即利用上一棵树所得的预测值与真实值的残差作为新的树的根节点去学习,举个例子:若A的真实年龄是为18,

第一棵树预测得到12,那么残差为6,第二棵树中就把A设为6来学习。一直利用上一次产生的残差来学习,直到残差为零。所以最终的结果为每

树的累计之和。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值