XGBOOST是利用特征去进行分类,每构建一棵树时,都是先遍历当前每一个特征,计算每个特征的最大增益,以增益增大点作为树的优先分裂点,
一直分裂下去,直到产生负值,这就构造成功一棵树。利用剩下的特征继续下一棵树的构造,每次构造树的方法都是相同,直到遍历完所有的特征,
这时每个样本的值为每颗树上对应样本所得分数之和。
GBDT采用的是残差构造树的方法,即利用上一棵树所得的预测值与真实值的残差作为新的树的根节点去学习,举个例子:若A的真实年龄是为18,
第一棵树预测得到12,那么残差为6,第二棵树中就把A设为6来学习。一直利用上一次产生的残差来学习,直到残差为零。所以最终的结果为每
树的累计之和。