提示:以下是本篇文章正文内容,Java系列学习将会持续更新
数据结构动态模型:https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
一、AVL树的概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
解决方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1,即可降低树的高度,从而减少平均搜索长度。
一棵AVL树具有以下性质:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1
- 平衡因子 = 右树高度 - 左树高度
二、插入
AVL树的插入过程可以分为两步:
- 按照二叉搜索树的方式插入新节点
- 调整节点的平衡因子
三、旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。
参考视频:B站UP主 - 林语石 AVL树的平衡调整 ,小姐姐人美声甜,关键讲得非常好、通俗易懂!
平衡调整的准则:
- 找距离插入节点最近的不平衡子树 (
|平衡因子| > 1
) - 以不平衡节点作为根进行旋转
- 仅旋转不平衡节点到插入节点方向上的3个节点,其余节点插入到适当位置
4种不平衡情况 ——> 对应的调整方案:
4. LL型 ——> R
5. RR型 ——> L
6. LR型 ——> LR
7. RL型 ——> RL
3-1 LL型 (右单旋)
中为支,高右旋。
例如:
3-2 RR型 (左单旋)
中为支,高左旋。
例如:
3-3 LR型 (左右双旋)
下二整体先左旋,而后变成LL型,高点右旋变平衡。
情况一:
情况二:
3-4 RL型 (右左双旋)
下二整体先右旋,而后变成RR型,高点左旋变平衡。
情况一:
情况二:
四、删除
AVL树的删除过程可以分为:
- 找到需要删除的节点
- 按照搜索树的删除规则删除节点—— Hibbard Deletion
- 更新平衡因子,如果出现了不平衡,进行旋转——单旋 / 双旋
五、性能分析
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度O(logN)。
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多。更差的是在删除时,有可能一直要让旋转持续到根的位置。
因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树。但一个结构经常修改,就不太适合。
六、完整代码
public class AVLTree {
private class TreeNode {
int val;
// 平衡因子 = 右子树高度 - 左子树的高度
int bf;
TreeNode left;
TreeNode right;
TreeNode parent;
TreeNode(int val) {
this.val = val;
}
}
private TreeNode root;
/**
* 插入操作
* 1. 先把数据插入二叉树中
* 2. 根据平衡因子对树进行平衡调整
* @return 无法插入重复元素
*/
public boolean insert(int val) {
TreeNode node = new TreeNode(val);
if(root == null) {
root = node;
return true;
}
TreeNode parent = null;
TreeNode cur = root;
while(cur != null) {
if(val == cur.val){
return false;
}else if(val < cur.val) {
parent = cur;
cur = parent.left;
}else{
parent = cur;
cur = parent.right;
}
}
// 此时cur=null,插入 val
if(val < parent.val) {
parent.left = node;
}else {
parent.right = node;
}
node.parent = parent;
cur = node;
/**
* 自底向上调节平衡因子
* 因为 bf = rightH - leftH, 所以当某个子树插入一个节点不引起左右子树高度变化时,就不需要继续向上调整平衡因子了
* 也就是,当某个子树节点从 (-1 / 1) -> 0 的时候
*/
while(parent != null) {
// 一直向上调节
if(cur == parent.left) {
// cur 是 parent 的左孩子
parent.bf --;
}else {
parent.bf ++;
}
if(parent.bf == 0) {
// 已经平衡了
break;
}else if(parent.bf == -1 || parent.bf == 1) {
// 继续向上
cur = parent;
parent = cur.parent;
}else {
// parent.bf = -2/2, 该子树不平衡了,应该旋转, 有以下4种情况:
if(parent.bf == -2 && cur.bf == -1) {
// LL型,右单旋
rotateR(parent);
}else if(parent.bf == 2 && cur.bf == 1) {
// RR型,左单旋
rotateL(parent);
}else if(parent.bf == -2 && cur.bf == 1) {
// LR型,左右双旋
rotateLR(parent);
}else {
// parent.bf == 2 && cur.bf == -1
// RL型,右左双旋
rotateRL(parent);
}
// 旋转完就一定平衡了
break;
}
}
return true;
}
// 左单旋
private void rotateL(TreeNode p) {
// p 的母节点
TreeNode pp = p.parent;
// p 的右孩子
TreeNode subR = p.right;
// subR 的左孩子,可能不存在
TreeNode subRL = subR.left;
// subR 提上去
if(pp == null) {
this.root = subR;
}else if(pp.left == p) {
pp.left = subR;
}else {
// pp.right == parent
pp.right = subR;
}
subR.parent = pp;
// p 作为 subR 的左孩子
subR.left = p;
p.parent = subR;
// p 与 subRL 连接
p.right = subRL;
if(subRL != null) {
subRL.parent = p;
}
// 经过旋转最终只会改变 parent 和 subR 的平衡因子
// 而且无论 subRL 是否存在,最终都是 0
subR.bf = 0;
p.bf = 0;
}
// 右单旋
private void rotateR(TreeNode p) {
// p 的父节点
TreeNode pp = p.parent;
// p 的左孩子
TreeNode subL = p.left;
// subL 的右孩子,可能不存在
TreeNode subLR = subL.right;
if(pp == null) {
this.root = subL;
}else if(pp.left == p) {
pp.left = subL;
}else {
pp.right = subL;
}
subL.parent = pp;
subL.right = p;
p.parent = subL;
p.left = subLR;
if(subLR != null) {
subLR.parent = p;
}
// 经过旋转最终只会改变 parent 和 subL 的平衡因子
// 而且无论 subLR 是否存在,最终都是 0
subL.bf = 0;
p.bf = 0;
}
// 左右双旋
private void rotateLR(TreeNode p) {
TreeNode subL = p.left;
TreeNode subLR = subL.right;
int bf = subLR.bf; // 可能为 0、1、-1
rotateL(subL);
rotateR(p);
subLR.bf = 0;
if(bf == 1) {
p.bf = 0;
subL.bf = -1;
}else if(bf == -1) {
subL.bf = 0;
p.bf = 1;
}
// 当 bf == 0 时,就不需要再手动改平衡因子了
}
// 右左双旋
private void rotateRL(TreeNode p) {
TreeNode subR = p.right;
TreeNode subRL = subR.left;
int bf = subRL.bf;
rotateR(subR);
rotateL(p);
subRL.bf = 0;
if(bf == -1) {
p.bf = 0;
subR.bf = 1;
}else if(bf == 1) {
subR.bf = 0;
p.bf = -1;
}
}
/**
* 查找操作
*/
public boolean contains(int val) {
return contains(root, val);
}
// 在当前树中查找元素
private boolean contains(TreeNode root, int val) {
if(root == null) {
return false;
}
if(val == root.val) {
return true;
}else if(val < root.val) {
return contains(root.left, val);
}else {
return contains(root.right, val);
}
}
/**
* 删除操作
* Hibbard Deletion: 拿前驱 / 后继 来代替
*/
public boolean delete(int val) {
if(root == null) {
return false;
}
// ......
return true;
}
/** 打印二叉树, 中序遍历的结果 **/
@Override
public String toString() {
List<Integer> list = new ArrayList<>();
inOrder(list, root);
return list.toString() + "\n" + "是否平衡: " + isBalance(this.root);
}
// 中序遍历
private void inOrder(List<Integer> list, TreeNode root) {
if(root == null){
return;
}
inOrder(list, root.left);
list.add(root.val);
inOrder(list, root.right);
}
/**
* 检验二叉树是否平衡
* 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
* 节点的平衡因子是否计算正确
*/
private boolean isBalance(TreeNode root) {
if(root == null) {
return true;
}
int leftH = height(root.left);
int rightH = height(root.right);
if(rightH - leftH != root.bf) {
System.err.println("平衡因子异常!");
return false;
}
return Math.abs(root.bf) < 2 && isBalance(root.left) && isBalance(root.right);
}
// 计算二叉树的高度
private int height(TreeNode root) {
if(root == null) {
return 0;
}
return 1 + Math.max(height(root.left), height(root.right));
}
}
总结:
提示:这里对文章进行总结:
以上就是今天的学习内容,本文是Java高阶数据结构的学习,如何自己实现一棵AVL树,以及插入节点后的平衡调整:左单旋、右单旋、左右双旋、右左双旋。之后的学习内容将持续更新!!!