长度为n的数组,取其中k个,要求和为sum,求有多少种取法

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq1509334304/article/details/53046716

长度为n的数组,取其中k个,要求和为sum,求有多少种取法

public class CountKequalSum {
	public static void main(String[] args) {
		int[] arr = {1,3,2,2};
		int k = 2;
		int sum = 4;
		int r = solution(arr,arr.length-1,k,sum);
		System.out.println(r);
	}
	static int solution(int[] arr,int end,int k, int sum){ //arr数组中,前end个数,取k个,和为sum的组合种类(取法)
		if(end+1 < k||end<0||k<0)
			return 0;
		if(sum == 0 && k==0)
			return 1;
		if(k==0 && sum!=0)
			return 0;
		
		int[][] result = new int[2][end+1];
		result[0][k-1] = 0;
		result[1][k-1] = init(arr,end, k, sum);		
		
		for (int i = k; i <= end; i++) {                         //状态递推公式
			result[0][i] = result[0][i-1]+result[1][i-1];        //result[0][i] 表示第i个数arr[i]不取时,有多少种组合
			result[1][i] = solution(arr, i-1, k-1, sum-arr[i]);    //result[1][i]  表示第i个数取时,有多少中组合
		}		
		return result[0][end]+result[1][end];		              
	}
	static int init(int[] arr,int end, int k, int sum){         //初值初始化计算
		if(sum == 0 && k==0)
			return 1;
		if( end < 0|| k < 1 ||end+1 < k)
			return 0;		
			int count = 0;
			for(int i = 0;i < k; i++){
				count += arr[i];
			}
			if(count == sum)
				return 1;
			return 0;		
	}

}

递归解法,第一选或者不选,两种情况的和为答案

 

package 算法;

public class CountKequalSumRecursion {
	public static void main(String[] args) {
		int[] arr = {1,3,2,2};
		int k = 2;
		int sum = 4;
		System.out.println(solution(arr, 0, k, sum));
		
	}
	static int solution(int[] arr,int begin, int k , int sum){
		if(begin > arr.length)
			return 0;		
		if(k==0 && sum != 0)
			return 0;		
		if(k == 0 && sum == 0)
			return 1;		
		if(begin >= arr.length)
			return 0;	
		return solution(arr, begin+1, k-1,sum-arr[begin])+solution(arr, begin+1, k, sum);//第i个选,或者第i个不选,两者相加		
	}

}

 

 

 

 

 

 

 

 

 

展开阅读全文

没有更多推荐了,返回首页