【LeetCode】 215. 数组中的第K个最大元素 大顶堆

本文介绍了一种高效查找数组中第K大元素的方法,通过使用最大堆的数据结构,避免了传统排序方法的高时间复杂度。文章详细解释了如何构建和维护最大堆,以确保堆中始终保留K个最大的元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题目传送门:传送门(点击此处)
在这里插入图片描述

题解

思路

这道题目是有难度的,如果使用先排序的方法,就有一点墨迹了,所以我们这道题目借助堆的数据结构,实现最大堆就可以了

代码

class Solution {
    public int findKthLargest(int[] nums, int k) {
        // init heap 'the smallest element first'
        PriorityQueue<Integer> heap = new PriorityQueue<Integer>((n1, n2) -> n1 - n2);
        // keep k largest elements in the heap
        for (int n : nums) {
            heap.add(n);
            if (heap.size() > k)
                heap.poll();
        }
        // output
        return heap.poll();
    }
}
### 关于LeetCode215题的描述 LeetCode215题名为 **Kth Largest Element in an Array**,其问题是要求在一个无序数组中找到第k大的元素。需要注意的是,这里的“第k大”是指按照降序排列后的第k个位置上的数。 #### 解决方案概述 一种常见的解决方法是利用排序算法来实现这一目标。通过构建一个小顶(Min Heap),可以有效地获取到所需的第k大元素。这种方法的时间复杂度通常为 \(O(n \log k)\),其中 n 是数组长度,而 k 则是我们要找的目标次序[^4]。 以下是基于 Python 的解决方案代码: ```python import heapq def findKthLargest(nums, k): # 使用heapq模块中的nlargest函数直接找出前k大的数并返回最后一个即为我们想要的结果 return heapq.nlargest(k, nums)[-1] # 测试样例 nums = [3, 2, 1, 5, 6, 4] k = 2 print(findKthLargest(nums, k)) # 输出应为5 ``` 此段代码借助了 `heapq` 库里的 `nlargest` 方法简化操作流程,从而达到快速定位的目的[^5]。 另外还有一种方式就是先对整个列表完成全面排序之后再选取相应索引处数值作为最终答案;不过这种做法虽然直观却可能带来不必要的计算负担,在性能上未必优于上述提到过的最小策略。 ### 提供更高效的解答思路 除了运用内置库外还可以手动创建最大(MaxHeap), 并持续移除顶部直到剩下最后那个代表所需值为止; 或者采用分治法(Divide And Conquer Approach)像快速选择(Quickselect Algorithm)那样只关注局部区域进而减少整体迭代次数以提高效率至平均情况下的线性时间复杂度 O(N)[^6].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Geek-Banana

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值