实验目的
- 在理论学习的基础上,通过本实验加深对离散傅里叶变换(DFT)和快速傅里叶变换(FFT)的理解。
- 可以较为熟练的编写DFT以及FFT相应的算法程序并进行实验验证。
实验内容
- 将边长为2^n的正方形图像,用FFT算法转换图像从空域到频域。
- 将频域图像以中心为原点的四个象限,做水平和垂直镜像,使图像能量中心,对应到几何中心,并用频域图像的模来进行显示。
- 将频域图像用FFT逆变换到空域并显示。
实验原理
离散傅里叶变换开辟了频域离散化的道路,使数字信号处理也可以在频域上采用数字运算方法进行,它可以作为一种数学工具来描述离散信号的时域与频域的表示关系,极大的增加了数字信号处理的灵活性,特别是它的快速算法。
快速傅里叶变换算法思想如下:
- N个点的变换,能够通过将原始表达式分成两个部分来计算;
- 通过计算两个(N/2)的变换,得到Feven(u)和Fodd(u);
- 奇部与偶部之和得到F(u)的前(N/2)个值;
- 奇部与偶部之差得到F(u)的后(N/2)个值,且不需要额外的变换计算。