AVL树(靠平衡因子判断翻转的二叉搜索树)

之前我们在学习set和map的时候说,他们的底层数二叉搜索树,其实这是不准确的,准确的来说他应该是AVL树
那么什么事AVL树呢啊?

但是二叉搜索树有其自身的缺陷,假如往树中 插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此>map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下:

在这里插入图片描述
棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是AVL树
左右子树高度之差(简称平衡因子)的绝对值不超过1
如果一棵二叉搜索树是高度平衡的,它就是AVL树。

AVL树节点的定义

在这里插入图片描述

#pragma once

#include<iostream>

using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//平衡因子
	pair<K, V> _kv;

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr),
		_right(nullptr),
		_partent(nullptr),
		_bf(0),
		_kv(kv);
	{
	}
};

template<class K, class V>
class AVLTree
{
	typedef	AVLTreeNode<K,V> Node;
private:
	Node* _root = nullptr;
};


插入:

先按照二叉搜索树的规则插入,当插入到不满足AVL树(平衡因子=-2||==2)的规则的时候进行旋转调整:

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)//插入比较的值是kv里面的key值
			{
				parent = cur;
				cur = cur->right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->left;
			}
			else//如果有相等的值,那么不插入直接返回false
			{
				return false;
			}
		}
		//找到了要插入的那个节点的位置 cur==nullpter
		cur = new Node(kv);//先构造一个节点
		//然后判断是插入在父节点的做还是右
		if (parent->_kv.first<kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;//从新更新父节点指针

以上的插入代码和二叉搜索树一样
不一样的是之后的判断调整代码:
平衡因子的更新:
在这里插入图片描述

右单旋:

在这里插入图片描述
模型特点:
在这里插入图片描述
旋转:
在这里插入图片描述
代码书写原理:

在这里插入图片描述
在这里插入图片描述

左单旋,原理和右旋转相同

在这里插入图片描述

代码:


	//左单旋函数 : parent=2;  说明右边高  用左旋转法
	void rotateL(Node* parent)
	{
		Node* subR = parent->right;
		Node* subRL = subR->left;

		parent->right = subRL;
		if (subRL)//subR也可能是空,那么他就不存在_parent指针
		{
			subRL->_parent = parent;
		}
		Node* pparent = parent->_parent;//记录parent的上一个节点
		subR->left = parent;
		parent->_parent = subR;

		if (parent == _root)//如果是根
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else//如果不是根,就要判断翻转的那个子树是右子树还是左子树
		{
			if (pparent->_left == parent)
			{
				pparent->_left = subR;
			}
			else
			{
				pparent->right = subR;
			}
			subR->_parent = pparent;
		}
		//翻转完成后还需要改变节点的平衡因子
		parent->_bf = 0;
		subR->_bf = 0;

	}
	//右单旋函数 : parent=-2;  说明左边高  用右旋转法
	void rotateR(Node* parent)
	{
		Node* cuL = parent->_left;
		Node* cuLR = cuL->_right;

		parent->_left = cuLR;
		Node* pparent = parent->_parent;
		cuL->right = parent;
		if (cuLR)
		{
			cuLR->_parent = parent;
		}
		parent->_parent = cuL;

		if (parent == _root)
		{
			_root = cuL;
			cul->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
			{
				pparent->_left = cuL;
			}
			else
			{
				pparent->_right = cuL;
			}
			cuL->_parent = pparent;
		}
		parent->_bf = 0;
		cuL->bf = 0;
	}

上面螚用左单旋的条件是:插入的节点是在parent的右节点的右节点上
单旋的条件是:插入的节点是在parent的左节点的左节点上
他们具有方向一致性,但是如果插入的节点不一致呢

     1、插入的节点在parent的左节点的右节点上

那么先对30(把30这个节点看做parent)进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
在这里插入图片描述
左旋和右旋的代码可以直接调用之前的,但是平衡因子是如何更新的呢?
先左旋在右旋的插入有三种情况:
在这里插入图片描述

     2、插入的节点在parent的右节点的左节点上

那么先对90(把90这个节点看做parent)进行左单旋,然后再对30进行右单旋,旋转完成后再考虑平衡因子的更新。
在这里插入图片描述
代码原理和先左旋再右旋相同

void rotateLR(Node* parent)//先左后右
	{
		Node* subL = parent->_left;
		Node* subLR = subL->right;

		rotateL(parent->_left);
		rotateR(parent->_right);

		

		int bf = subLR->_bf;
		if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->bf = 1;
		}else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->bf = 0;
		}else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->bf = 0;
		}
		

	}

	void rotateRL(Node* parent)//先右后左
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		rotateR(parent->_right);
		rotateL(parent->_left);

		int bf = subRL->_bf;
		if (bf == -1)
		{
			subRL->_bf = 0;
			subR->_bf = 1;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			ubRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == 0)
		{
			ubRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = 0;
		}

	}

综上就已经把旋转的所有条件的都囊括了

else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)//左单旋
				{
					rotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)//右旋
				{
					rotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf = 1)//先左后右
				{
					rotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf = -1)//先右后左
				{
					rotateRL(parent);
				}
			}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值